Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Breastfeed Med ; 19(6): 445-450, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38529934

ABSTRACT

Background: To investigate the efficacy of aloe gel in reducing pain and promoting wound healing in postpartum women with nipple trauma. Method: There were 80 postpartum women who took part in this study having developed nipple trauma during breastfeeding in the obstetrics department of a tertiary grade A hospital in Suzhou from January to December 2021. Postpartum women with nipple trauma whose hospital bed numbers ranged between 15 and 33 were included in the test group, whereas those whose hospital bed numbers ranged between 35 and 53 were included in the control group. Both groups received health education and breastfeeding guidance. The control group applied lanolin cream to their nipple trauma, whereas the test group used aloe gel. We used a nipple trauma severity assessment table to determine the severity of nipple trauma in lactating women and a Visual Analogue Scale (VAS) to determine the level of nipple pain and referred to the Traditional Chinese Medicine Standard for Diagnosis and Therapeutic Efficacy for Diseases and Syndromes to determine the healing time of their wounds. Results: The test group scored 3.70 ± 1.24 and 1.65 ± 0.74 points on the VAS on the first and third days following the intervention, whereas the control group scored 4.30 ± 0.94 and 2.23 ± 1.07 points, respectively. It took 3.75 ± 1.08 days and 4.45 ± 1.15 days for the nipple pain to completely disappear in the test group and the control group, respectively. The healing period for nipple trauma was 5.28 ± 1.26 days for the test group and 6.03 ± 1.61 days for the control group. All of the aforementioned distinctions were statistically significant (p < 0.05). Conclusions: Aloe gel can significantly alleviate the pain associated with nipple trauma in lactating women, accelerate wound healing, and reduce the duration of nipple trauma.


Subject(s)
Aloe , Breast Feeding , Gels , Lactation , Nipples , Wound Healing , Humans , Nipples/injuries , Female , Adult , Lactation/drug effects , Wound Healing/drug effects , Lanolin , Pain Measurement , Postpartum Period , Pain/drug therapy , Pain/etiology
2.
Front Cell Neurosci ; 17: 1129773, 2023.
Article in English | MEDLINE | ID: mdl-37213217

ABSTRACT

Introduction: Alzheimer's disease (AD) is characterized by increasing cognitive dysfunction, progressive cerebral amyloid beta (Aß) deposition, and neurofibrillary tangle aggregation. However, the molecular mechanisms of AD pathologies have not been completely understood. As synaptic glycoprotein neuroplastin 65 (NP65) is related with synaptic plasticity and complex molecular events underlying learning and memory, we hypothesized that NP65 would be involved in cognitive dysfunction and Aß plaque formation of AD. For this purpose, we examined the role of NP65 in the transgenic amyloid precursor protein (APP)/presenilin 1 (PS1) mouse model of AD. Methods: Neuroplastin 65-knockout (NP65-/-) mice crossed with APP/PS1 mice to get the NP65-deficient APP/PS1 mice. In the present study, a separate cohort of NP65-deficient APP/PS1 mice were used. First, the cognitive behaviors of NP65-deficient APP/PS1 mice were assessed. Then, Aß plaque burden and Aß levels in NP65-deficient APP/PS1 mice were measured by immunostaining and western blot as well as ELISA. Thirdly, immunostaining and western blot were used to evaluate the glial response and neuroinflammation. Finally, protein levels of 5-hydroxytryptamin (serotonin) receptor 3A and synaptic proteins and neurons were measured. Results: We found that loss of NP65 alleviated the cognitive deficits of APP/PS1 mice. In addition, Aß plaque burden and Aß levels were significantly reduced in NP65-deficient APP/PS1 mice compared with control animals. NP65-loss in APP/PS1 mice resulted in a decrease in glial activation and the levels of pro- and anti-inflammatory cytokines (IL-1ß, TNF-α, and IL-4) as well as protective matrix YM-1 and Arg-1, but had no effect on microglial phenotype. Moreover, NP65 deficiency significantly reversed the increase in 5-hydroxytryptamine (serotonin) receptor 3A (Htr3A) expression levels in the hippocampus of APP/PS1 mice. Discussion: These findings identify a previously unrecognized role of NP65 in cognitive deficits and Aß formation of APP/PS1 mice, and suggest that NP65 may serve as a potential therapeutic target for AD.

3.
Neural Regen Res ; 18(9): 2019-2028, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36926728

ABSTRACT

Extracellular amyloid beta (Aß) plaques are main pathological feature of Alzheimer's disease. However, the specific type of neurons that produce Aß peptides in the initial stage of Alzheimer's disease are unknown. In this study, we found that 5-hydroxytryptamin receptor 3A subunit (HTR3A) was highly expressed in the brain tissue of transgenic amyloid precursor protein and presenilin-1 mice (an Alzheimer's disease model) and patients with Alzheimer's disease. To investigate whether HTR3A-positive interneurons are associated with the production of Aß plaques, we performed double immunostaining and found that HTR3A-positive interneurons were clustered around Aß plaques in the mouse model. Some amyloid precursor protein-positive or ß-site amyloid precursor protein cleaving enzyme-1-positive neurites near Aß plaques were co-localized with HTR3A interneurons. These results suggest that HTR3A -positive interneurons may partially contribute to the generation of Aß peptides. We treated 5.0-5.5-month-old model mice with tropisetron, a HTR3 antagonist, for 8 consecutive weeks. We found that the cognitive deficit of mice was partially reversed, Aß plaques and neuroinflammation were remarkably reduced, the expression of HTR3 was remarkably decreased and the calcineurin/nuclear factor of activated T-cell 4 signaling pathway was inhibited in treated model mice. These findings suggest that HTR3A interneurons partly contribute to generation of Aß peptide at the initial stage of Alzheimer's disease and inhibiting HTR3 partly reverses the pathological changes of Alzheimer's disease.

4.
Cell Rep Med ; 4(1): 100878, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36599350

ABSTRACT

Although immune checkpoint inhibitors (ICIs) are established as effective cancer therapies, overcoming therapeutic resistance remains a critical challenge. Here we identify interleukin 6 (IL-6) as a correlate of poor response to atezolizumab (anti-PD-L1) in large clinical trials of advanced kidney, breast, and bladder cancers. In pre-clinical models, combined blockade of PD-L1 and the IL-6 receptor (IL6R) causes synergistic regression of large established tumors and substantially improves anti-tumor CD8+ cytotoxic T lymphocyte (CTL) responses compared with anti-PD-L1 alone. Circulating CTLs from cancer patients with high plasma IL-6 display a repressed functional profile based on single-cell RNA sequencing, and IL-6-STAT3 signaling inhibits classical cytotoxic differentiation of CTLs in vitro. In tumor-bearing mice, CTL-specific IL6R deficiency is sufficient to improve anti-PD-L1 activity. Thus, based on both clinical and experimental evidence, agents targeting IL-6 signaling are plausible partners for combination with ICIs in cancer patients.


Subject(s)
Antineoplastic Agents , Interleukin-6 , Neoplasms , Animals , Mice , Antineoplastic Agents/therapeutic use , B7-H1 Antigen/immunology , B7-H1 Antigen/therapeutic use , CD8-Positive T-Lymphocytes/metabolism , Immunotherapy , Interleukin-6/metabolism , Neoplasms/immunology , Neoplasms/therapy
5.
Nat Commun ; 12(1): 3969, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172722

ABSTRACT

Immune checkpoint inhibitors targeting the PD-1/PD-L1 axis lead to durable clinical responses in subsets of cancer patients across multiple indications, including non-small cell lung cancer (NSCLC), urothelial carcinoma (UC) and renal cell carcinoma (RCC). Herein, we complement PD-L1 immunohistochemistry (IHC) and tumor mutation burden (TMB) with RNA-seq in 366 patients to identify unifying and indication-specific molecular profiles that can predict response to checkpoint blockade across these tumor types. Multiple machine learning approaches failed to identify a baseline transcriptional signature highly predictive of response across these indications. Signatures described previously for immune checkpoint inhibitors also failed to validate. At the pathway level, significant heterogeneity is observed between indications, in particular within the PD-L1+ tumors. mUC and NSCLC are molecularly aligned, with cell cycle and DNA damage repair genes associated with response in PD-L1- tumors. At the gene level, the CDK4/6 inhibitor CDKN2A is identified as a significant transcriptional correlate of response, highlighting the association of non-immune pathways to the outcome of checkpoint blockade. This cross-indication analysis reveals molecular heterogeneity between mUC, NSCLC and RCC tumors, suggesting that indication-specific molecular approaches should be prioritized to formulate treatment strategies.


Subject(s)
Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic/drug effects , Immune Checkpoint Inhibitors/pharmacology , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Humans , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Mutation , Treatment Outcome , Urinary Bladder Neoplasms/drug therapy , Urinary Bladder Neoplasms/genetics , Whole Genome Sequencing
7.
Neural Regen Res ; 16(9): 1677-1685, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33510055

ABSTRACT

Transplantation of neural stem cells (NSCs) can protect neurons in animal stroke models; however, their low rates of survival and neuronal differentiation limit their clinical application. Glial niches, an important location of neural stem cells, regulate survival, proliferation and differentiation of neural stem cells. However, the effects of activated glial cells on neural stem cells remain unclear. In the present study, we explored the effects of activated astrocytes and microglia on neural stem cells in vitro stroke models. We also investigated the effects of combined transplantation of neural stem cells and glial cells after stroke in rats. In a Transwell co-culture system, primary cultured astrocytes, microglia or mixed glial cells were exposed to glutamate or H2O2 and then seeded in the upper inserts, while primary neural stem cells were seeded in the lower uncoated wells and cultured for 7 days. Our results showed that microglia were conducive to neurosphere formation and had no effects on apoptosis within neurospheres, while astrocytes and mixed glial cells were conducive to neurosphere differentiation and reduced apoptosis within neurospheres, regardless of their pretreatment. In contrast, microglia and astrocytes induced neuronal differentiation of neural stem cells in differentiation medium, regardless of their pretreatment, with an exception of astrocytes pretreated with H2O2. Rat models of ischemic stroke were established by occlusion of the middle cerebral artery. Three days later, 5 × 105 neural stem cells with microglia or astrocytes were injected into the right lateral ventricle. Neural stem cell/astrocyte-treated rats displayed better improvement of neurological deficits than neural stem cell only-treated rats at 4 days after cell transplantation. Moreover, neural stem cell/microglia-, and neural stem cell/astrocyte-treated rats showed a significant decrease in ischemic volume compared with neural stem cell-treated rats. These findings indicate that microglia and astrocytes exert different effects on neural stem cells, and that co-transplantation of neural stem cells and astrocytes is more conducive to the recovery of neurological impairment in rats with ischemic stroke. The study was approved by the Animal Ethics Committee of Tongji University School of Medicine, China (approval No. 2010-TJAA08220401) in 2010.

8.
Cancer Cell ; 38(6): 803-817.e4, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33157048

ABSTRACT

Integrated multi-omics evaluation of 823 tumors from advanced renal cell carcinoma (RCC) patients identifies molecular subsets associated with differential clinical outcomes to angiogenesis blockade alone or with a checkpoint inhibitor. Unsupervised transcriptomic analysis reveals seven molecular subsets with distinct angiogenesis, immune, cell-cycle, metabolism, and stromal programs. While sunitinib and atezolizumab + bevacizumab are effective in subsets with high angiogenesis, atezolizumab + bevacizumab improves clinical benefit in tumors with high T-effector and/or cell-cycle transcription. Somatic mutations in PBRM1 and KDM5C associate with high angiogenesis and AMPK/fatty acid oxidation gene expression, while CDKN2A/B and TP53 alterations associate with increased cell-cycle and anabolic metabolism. Sarcomatoid tumors exhibit lower prevalence of PBRM1 mutations and angiogenesis markers, frequent CDKN2A/B alterations, and increased PD-L1 expression. These findings can be applied to molecularly stratify patients, explain improved outcomes of sarcomatoid tumors to checkpoint blockade versus antiangiogenics alone, and develop personalized therapies in RCC and other indications.


Subject(s)
Angiogenesis Inhibitors/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/drug therapy , Immune Checkpoint Inhibitors/therapeutic use , Kidney Neoplasms/drug therapy , Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Bevacizumab/pharmacology , Bevacizumab/therapeutic use , Carcinoma, Renal Cell/genetics , Clinical Trials, Phase III as Topic , Computational Biology/methods , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Kidney Neoplasms/genetics , Prognosis , Randomized Controlled Trials as Topic , Sequence Analysis, RNA , Sunitinib/pharmacology , Sunitinib/therapeutic use , Treatment Outcome , Unsupervised Machine Learning
9.
Nat Med ; 26(5): 693-698, 2020 05.
Article in English | MEDLINE | ID: mdl-32405063

ABSTRACT

Although elevated plasma interleukin-8 (pIL-8) has been associated with poor outcome to immune checkpoint blockade 1, this has not been comprehensively evaluated in large randomized studies. Here we analyzed circulating pIL-8 and IL8 gene expression in peripheral blood mononuclear cells and tumors of patients treated with atezolizumab (anti-PD-L1 monoclonal antibody) from multiple randomized trials representing 1,445 patients with metastatic urothelial carcinoma (mUC) and metastatic renal cell carcinoma. High levels of IL-8 in plasma, peripheral blood mononuclear cells and tumors were associated with decreased efficacy of atezolizumab in patients with mUC and metastatic renal cell carcinoma, even in tumors that were classically CD8+ T cell inflamed. Low baseline pIL-8 in patients with mUC was associated with increased response to atezolizumab and chemotherapy. Patients with mUC who experienced on-treatment decreases in pIL-8 exhibited improved overall survival when treated with atezolizumab but not with chemotherapy. Single-cell RNA sequencing of the immune compartment showed that IL8 is primarily expressed in circulating and intratumoral myeloid cells and that high IL8 expression is associated with downregulation of the antigen-presentation machinery. Therapies that can reverse the impacts of IL-8-mediated myeloid inflammation will be essential for improving outcomes of patients treated with immune checkpoint inhibitors.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Interleukin-8/metabolism , Neoplasms/diagnosis , Neoplasms/drug therapy , Adult , Antibodies, Monoclonal, Humanized/therapeutic use , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/blood , Biomarkers, Pharmacological/metabolism , Biomarkers, Tumor/blood , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/diagnosis , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/mortality , Carcinoma, Transitional Cell/diagnosis , Carcinoma, Transitional Cell/drug therapy , Carcinoma, Transitional Cell/metabolism , Carcinoma, Transitional Cell/mortality , Drug Resistance, Neoplasm , Female , Humans , Interleukin-8/blood , Kidney Neoplasms/diagnosis , Kidney Neoplasms/drug therapy , Kidney Neoplasms/metabolism , Kidney Neoplasms/mortality , Male , Neoplasms/metabolism , Neoplasms/mortality , Prognosis , Survival Analysis , Treatment Failure , Urologic Neoplasms/diagnosis , Urologic Neoplasms/drug therapy , Urologic Neoplasms/metabolism , Urologic Neoplasms/mortality
10.
Huan Jing Ke Xue ; 39(7): 3321-3328, 2018 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-29962158

ABSTRACT

Transformation of perfluorooctane sulfonate (PFOS) precursors (PreFOSs) is considered an additional source of PFOS in the environment and biota. A PreFOSs-degrading bacterium PF1, which was able to utilize PreFOSs as the sole carbon and energy source for growth, was isolated from contaminated soil collected from the surroundings of a fluoride factory. According to its morphology and 16S rDNA gene sequence analysis, strain PF1 was identified as Hyphomicrobium sp. The degradation rates of perfluorooctane sulfonamide (PFOSA) and N-ethyl perfluorooctane sulfonamide (N-EtFOSA) by PF1 were 14.6% and 8.2% (30℃; pH=7.0-7.2), respectively, whereas PF1 was unable to degrade PFOS. PFOSA could be biodegraded to PFOS. N-EtFOSA could be biodegraded to perfluorooctane sulfonamide acetic acid (FOSAA), PFOSA, and PFOS; PFOS was the predominant metabolite. Based on the above analysis, the proposed metabolic pathway of PFOSA by strain PF1 is deamination to form PFOS. Two possible degradation pathways are proposed for N-EtFOSA: ① deethylation of N-EtFOSA to produce PFOSA, followed by deamination to form PFOS, and ②oxidation of N-EtFOSA to FOSAA followed by sequential dealkylation to produce PFOSA, and then transformation to PFOS by deamination.


Subject(s)
Alkanesulfonic Acids/metabolism , Bacteria/classification , Bacteria/metabolism , Fluorocarbons/metabolism , Soil Microbiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Soil
11.
Diabetes Obes Metab ; 20(2): 352-361, 2018 02.
Article in English | MEDLINE | ID: mdl-28776922

ABSTRACT

AIM: To evaluate the efficacy, pharmacokinetic (PK) profile and tolerability of subcutaneous (s.c.). exendin 9-39 (Ex-9) injection in patients with post-bariatric hypoglycaemia (PBH). METHODS: Nine women who had recurrent symptomatic hypoglycaemia after undergoing Roux-en-Y gastric bypass were enrolled in this 2-part, single-blind, single-ascending-dose study. In Part 1, a single participant underwent equimolar low-dose intravenous (i.v.) vs s.c. Ex-9 administration; in Part 2, 8 participants were administered single ascending doses of s.c. Ex-9 during an oral glucose tolerance test (OGTT). Glycaemic, hormonal, PK and symptomatic responses were compared with those obtained during the baseline OGTT. RESULTS: Although an exposure-response relationship was observed, all doses effectively prevented hyperinsulinaemic hypoglycaemia and improved associated symptoms. On average, the postprandial glucose nadir was increased by 66%, peak insulin was reduced by 57%, and neuroglycopenic symptoms were reduced by 80%. All doses were well tolerated with no treatment-emergent adverse events observed. CONCLUSIONS: Injection s.c. of Ex-9 appears to represent a safe, effective and targeted therapeutic approach for treatment of PBH. Further investigation involving multiple doses with chronic dosing is warranted.


Subject(s)
Gastric Bypass/adverse effects , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Hyperinsulinism/prevention & control , Hypoglycemia/prevention & control , Hypoglycemic Agents/administration & dosage , Peptide Fragments/administration & dosage , Postoperative Complications/prevention & control , Adult , Area Under Curve , Cohort Studies , Dose-Response Relationship, Drug , Female , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose Tolerance Test/adverse effects , Half-Life , Humans , Hyperinsulinism/blood , Hyperinsulinism/etiology , Hyperinsulinism/metabolism , Hypoglycemia/blood , Hypoglycemia/etiology , Hypoglycemia/metabolism , Hypoglycemic Agents/adverse effects , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Infusions, Intravenous , Injections, Subcutaneous , Insulin/blood , Middle Aged , Peptide Fragments/adverse effects , Peptide Fragments/pharmacokinetics , Peptide Fragments/therapeutic use , Pilot Projects , Postoperative Complications/blood , Postoperative Complications/etiology , Postoperative Complications/metabolism , Postprandial Period , Single-Blind Method
12.
Polymers (Basel) ; 10(4)2018 Mar 21.
Article in English | MEDLINE | ID: mdl-30966381

ABSTRACT

In the current study, the poly (amide-urethane) (PAUt) membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD) and 5-choroformyloxyisophaloyl chloride (CFIC) on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied to modify the PAUt membrane surface to achieve antifouling property: 1. Chitosan (CS) was directly self-assembled on the PAUt membrane (i.e., PAUt-CS); and 2. polydimethyl diallyl ammonium chloride (PDDA), polystyrene sulfonate (PSS), and CS were successively self-assembled on the membrane surface (i.e., PAUt-PDDA/PSS/CS). The resultant membranes were symmetrically characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Contact Angle Meter (CAM), respectively. The results indicated that the modified membranes had much smoother and more hydrophilic surfaces as compared to the nascent PAUt membrane. Meanwhile, the modified membranes exhibited better reverse osmosis performance in terms of water permeability and salt rejection. After the modified membranes were fouled by lake water, the PAUt-PDDA/PSS/CS membrane presented the best antifouling performance among the three types of membranes. Combining the reverse osmosis performance with the anti-fouling property obviously, the PAUt-PDDA/PSS/CS membrane behaved as a promising candidate to be used in real applications.

13.
Polymers (Basel) ; 10(6)2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30966720

ABSTRACT

In this study, modification of polysulfone (PSf)/sulfonated polysulfone (SPSf) blended porous ultrafiltration (UF) support membranes was proposed to improve the reverse osmosis (RO) performance of aromatic polyamide thin film composite (TFC) membranes. The synergistic effects of solvent, polymer concentration, and SPSf doping content in the casting solution were investigated systematically on the properties of both porous supports and RO membranes. SEM and AFM were combined to characterize the physical properties of the membranes, including surface pore natures (porosity, mean pore radius), surface morphology, and section structure. A contact angle meter was used to analyze the membrane surface hydrophilicity. Permeate experiments were carried out to evaluate the separation performances of the membranes. The results showed that the PSf/SPSf blended porous support modified with 6 wt % SPSf in the presence of DMF and 14 wt % PSf had higher porosity, bigger pore diameter, and a rougher and more hydrophilic surface, which was more beneficial for fabrication of a polyamide TFC membrane with favorable reverse osmosis performance. This modified PSf/SPSf support endowed the RO membrane with a more hydrophilic surface, higher water flux (about 1.2 times), as well as a slight increase in salt rejection than the nascent PSf support. In a word, this work provides a new facile method to improve the separation performance of polyamide TFC RO membranes via the modification of conventional PSf porous support with SPSf.

14.
RSC Adv ; 8(27): 15102-15110, 2018 Apr 18.
Article in English | MEDLINE | ID: mdl-35541356

ABSTRACT

In this work, a dendrimer trimesoyl amide amine (TMAAM) monomer was proposed to be used as a key functional monomer to modify the conventional aromatic polyamide thin-film composite (TFC) nanofiltration (NF) membrane, and a new kind of TMAAM-based semi-aromatic polyamide composite NF membrane was thus prepared by interfacial polymerization. The effects of the PIP/TMAAM ratio (PIP = piperazine) on the membrane chemical structure, surface properties and separation performances were investigated systematically. With the increase in TMAAM content loaded in the membrane, the water flux strongly increased but the salt rejection decreased only slightly. When the PIP/TMAAM ratio was 1, the membrane NF-2 exhibited a smoother and more hydrophilic surface, as a result of which it displayed an optimum separation performance for different valent salts. In addition, the TMAAM modified TFC membrane presented an extremely high rejection to negatively charged dye molecules and high permeation for monovalent salts, leading to good prospects for dye/salt separation application. Moreover, both the water flux and salt rejection of the TMAAM-based membrane were stable in a long-term running process, and the membrane showed a favourable anti-fouling property and efficient cleaning recovery. Therefore, this work provides a new type of semi-aromatic polyamide composite NF membrane fabricated by a facile and straightforward method via interfacial polymerization with high hydrophilicity, good stability and strong anti-fouling property.

15.
RSC Adv ; 8(66): 37817-37827, 2018 Nov 07.
Article in English | MEDLINE | ID: mdl-35558596

ABSTRACT

A novel reverse osmosis (RO) composite membrane, poly(amide-urethane-imide@Ag) (PAUI@Ag), was prepared on a polysulfone supporting film through two-step interfacial polymerization. First, in the 1st interfacial polymerization procedure, a new tri-functional crosslinking agent with -OCOCl and -COCl groups, 5-choroformyloxyisophaloyl chloride (CFIC), was reacted with 4-methyl-phenylenediamine (MMPD) without curing treatment to obtain the poly(amide-urethane) base membrane with a CFIC-MMPD precursor separation layer. And then N,N'-dimethyl-m-phenylenediamine (DMMPD) with nano-Ag particle dispersion was introduced onto the base membrane to further construct a CFIC-DMMPD modified ultrathin separation layer via the 2nd interfacial polymerization. Thus, the PAUI@Ag RO membrane with poly(amide-urethane-imide) bi-layer skin was obtained. The membrane was characterized for the chemical composition of separation layer, the membrane cross-section structure and the membrane surface morphology. Permeation experiment was employed to evaluate the PAUI@Ag membrane performance including salt rejection rate and water flux. The results revealed that the PAUI@Ag membrane composed the highly cross-linked separation layer with entire ridges and valleys, small surface roughness, and well dispersed nano-Ag particles. Upon exposure of the membranes to high concentration of free chlorine solutions, the PAUI@Ag RO membrane showed a slightly less chlorine-resistant property compared with the nascent PAUI RO membrane, but was still superior to the conventional polyamide MPD-TMC RO membrane, meanwhile it processed higher anti-biofouling property.

16.
PLoS One ; 12(2): e0170728, 2017.
Article in English | MEDLINE | ID: mdl-28151993

ABSTRACT

AIM: The physiologic mechanisms underlying the relationship between obesity and insulin resistance are not fully understood. Impaired adipocyte differentiation and localized inflammation characterize adipose tissue from obese, insulin-resistant humans. The directionality of this relationship is not known, however. The aim of the current study was to investigate whether adipose tissue inflammation is causally-related to impaired adipocyte differentiation. METHODS: Abdominal subcutaneous(SAT) and visceral(VAT) adipose tissue was obtained from 20 human participants undergoing bariatric surgery. Preadipocytes were isolated, and cultured in the presence or absence of CD14+ macrophages obtained from the same adipose tissue sample. Adipocyte differentiation was quantified after 14 days via immunofluorescence, Oil-Red O, and adipogenic gene expression. Cytokine secretion by mature adipocytes cultured with or without CD14+macrophages was quantified. RESULTS: Adipocyte differentiation was significantly lower in VAT than SAT by all measures (p<0.001). With macrophage removal, SAT preadipocyte differentiation increased significantly as measured by immunofluorescence and gene expression, whereas VAT preadipocyte differentiation was unchanged. Adipocyte-secreted proinflammatory cytokines were higher and adiponectin lower in media from VAT vs SAT: macrophage removal reduced inflammatory cytokine and increased adiponectin secretion from both SAT and VAT adipocytes. Differentiation of preadipocytes from SAT but not VAT correlated inversely with systemic insulin resistance. CONCLUSIONS: The current results reveal that proinflammatory immune cells in human SAT are causally-related to impaired preadipocyte differentiation, which in turn is associated with systemic insulin resistance. In VAT, preadipocyte differentiation is poor even in the absence of tissue macrophages, pointing to inherent differences in fat storage potential between the two depots.


Subject(s)
Adipocytes/cytology , Adipogenesis/physiology , Adipose Tissue/cytology , Insulin Resistance/physiology , Macrophages/immunology , Obesity/pathology , Adipokines/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Female , Gene Expression Regulation , Humans , Inflammation/pathology , Lipopolysaccharide Receptors/metabolism , Male , Middle Aged
17.
Huan Jing Ke Xue ; 38(3): 1054-1060, 2017 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-29965576

ABSTRACT

To address the problem of low activity for Fe-based Fenton-like catalysts at neutral pH, Cu-Al2O3 Fenton-like catalyst was prepared by a simple co-precipitation method. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and diffuse reflectance UV-vis spectra (UV-vis DRS). The results showed that both Cu2+ and Cu+mainly existed in the bulk framework of Al2O3 for Cu-Al2O3 with appropriate Cu doping (lower than 4.77% Cu), forming the bond of Al-O-Cu, while excessive Cu doping in Al2O3 (e. g. 7.58% Cu) could result in the occurrence of extraframework Cu species. The Fenton-like catalytic performance of the prepared samples was evaluated by the degradation of 2-chlorophenol (2-CP) and Rhodamine B (RhB). The results showed that the catalyst with framework Cu species had high catalytic activity and stability for the degradation of 2-CP and RhB. After reaction for 2 h, the degradation rate of 2-CP reached up to 54% over Cu-Al2O3(4.77% Cu) in the presence of H2O2, the corresponding TOC removal reached 49%, and the Cu release concentration was only 0.0255 mg·L-1. However, the existence of extraframework Cu in Al2O3 would lead to the reduction of the catalytic performance. ESR analysis showed that·OH and HO2-/O2-· were the primary active species.

18.
Diabetologia ; 60(3): 531-540, 2017 03.
Article in English | MEDLINE | ID: mdl-27975209

ABSTRACT

AIMS/HYPOTHESIS: Post-bariatric hypoglycaemia (PBH) is a rare, but severe, metabolic disorder arising months to years after bariatric surgery. It is characterised by symptomatic postprandial hypoglycaemia, with inappropriately elevated insulin concentrations. The relative contribution of exaggerated incretin hormone signalling to dysregulated insulin secretion and symptomatic hypoglycaemia is a subject of ongoing inquiry. This study was designed to test the hypothesis that PBH and associated symptoms are primarily mediated by glucagon-like peptide-1 (GLP-1). METHODS: We conducted a double-blinded crossover study wherein eight participants with confirmed PBH were assigned in random order to intravenous infusion of the GLP-1 receptor (GLP-1r) antagonist. Exendin (9-39) (Ex-9), or placebo during an OGTT on two separate days at the Stanford University Clinical and Translational Research Unit. Metabolic, symptomatic and pharmacokinetic variables were evaluated. Results were compared with a cohort of BMI- and glucose-matched non-surgical controls (NSCs). RESULTS: Infusion of Ex-9 decreased the time to peak glucose and rate of glucose decline during OGTT, and raised the postprandial nadir by over 70%, normalising it relative to NSCs and preventing hypoglycaemia in all PBH participants. Insulin AUC and secretion rate decreased by 57% and 71% respectively, and peak postprandial insulin was normalised relative to NSCs. Autonomic and neuroglycopenic symptoms were significantly reduced during Ex-9 infusion. CONCLUSIONS/INTERPRETATION: GLP-1r blockade prevented hypoglycaemia in 100% of individuals, normalised beta cell function and reversed neuroglycopenic symptoms, supporting the conclusion that GLP-1 plays a primary role in mediating hyperinsulinaemic hypoglycaemia in PBH. Competitive antagonism at the GLP-1r merits consideration as a therapeutic strategy. TRIAL REGISTRATION: ClinicalTrials.gov NCT02550145.


Subject(s)
Glucagon-Like Peptide 1/metabolism , Hypoglycemia/metabolism , Adult , Cross-Over Studies , Double-Blind Method , Female , Gastric Bypass , Gastric Inhibitory Polypeptide/metabolism , Glucagon/metabolism , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Glucagon-Like Peptide-1 Receptor/metabolism , Glucose/metabolism , Glucose Tolerance Test , Humans , Insulin/metabolism , Male , Middle Aged , Peptide Fragments/pharmacology , Surveys and Questionnaires
19.
BMC Neurosci ; 17(1): 37, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27296974

ABSTRACT

BACKGROUND: Glucagon-like peptide 1 (GLP-1) analogs protect a variety of cell types against oxidative damage and vascular and neuronal injury via binding to GLP-1 receptors. This study aimed to investigate the effects of the GLP-1 analogs exendin-4 and liraglutide on cerebral blood flow, reactive oxygen species production, expression of oxidative stress-related proteins, cognition, and pelvic sympathetic nerve-mediated bladder contraction after middle cerebral artery occlusion (MCAO) injury in the db/db mouse model of diabetes. RESULTS: Sixty minutes of MCAO increased blood and brain reactive oxygen species counts in male db/db mice, as revealed by dihydroethidium staining. MCAO also increased nuclear factor-κB and intercellular adhesion molecule-1 expression and decreased cerebral microcirculation. These effects were attenuated by treatment with exendin-4 or liraglutide. MCAO did not affect basal levels of phosphorylated Akt (p-Akt) or endothelial nitric oxide synthase (p-eNOS); however, exendin-4 and liraglutide treatments significantly enhanced p-Akt and p-eNOS levels, indicating activation of the p-Akt/p-eNOS signaling pathway. MCAO-induced motor and cognitive deficits and micturition dysfunction, indicated by reduced pelvic nerve-mediated voiding contractions and increased nonvoiding contractions, were also partially attenuated by exendin-4 treatment. CONCLUSIONS: The above data indicate that treatment with GLP-1 agonists exerts protective effects against oxidative, inflammatory, and apoptotic damage in brain areas that control parasympathetic/pelvic nerve-mediated voiding contractions and cognitive and motor behaviors in a diabetic mouse model.


Subject(s)
Cognition Disorders/drug therapy , Diabetes Mellitus, Experimental/drug therapy , Glucagon-Like Peptide-1 Receptor/agonists , Infarction, Middle Cerebral Artery/drug therapy , Oxidative Stress/drug effects , Urination Disorders/drug therapy , Animals , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Cognition Disorders/etiology , Cognition Disorders/physiopathology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Exenatide , Glucagon-Like Peptide-1 Receptor/metabolism , Hypoglycemic Agents/pharmacology , Infarction, Middle Cerebral Artery/complications , Infarction, Middle Cerebral Artery/physiopathology , Liraglutide/pharmacology , Male , Mice , Movement Disorders/drug therapy , Movement Disorders/etiology , Movement Disorders/physiopathology , Nootropic Agents/pharmacology , Oxidative Stress/physiology , Peptides/pharmacology , Protective Agents/pharmacology , Urination Disorders/etiology , Urination Disorders/physiopathology , Venoms/pharmacology
20.
Diabetes ; 65(5): 1245-54, 2016 05.
Article in English | MEDLINE | ID: mdl-26884438

ABSTRACT

Obesity is associated with insulin resistance, but significant variability exists between similarly obese individuals, pointing to qualitative characteristics of body fat as potential mediators. To test the hypothesis that obese, insulin-sensitive (IS) individuals possess adaptive adipose cell/tissue responses, we measured subcutaneous adipose cell size, insulin suppression of lipolysis, and regional fat responses to short-term overfeeding in BMI-matched overweight/obese individuals classified as IS or insulin resistant (IR). At baseline, IR subjects exhibited significantly greater visceral adipose tissue (VAT), intrahepatic lipid (IHL), plasma free fatty acids, adipose cell diameter, and percentage of small adipose cells. With weight gain (3.1 ± 1.4 kg), IR subjects demonstrated no significant change in adipose cell size, VAT, or insulin suppression of lipolysis and only 8% worsening of insulin-mediated glucose uptake (IMGU). Alternatively, IS subjects demonstrated significant adipose cell enlargement; decrease in the percentage of small adipose cells; increase in VAT, IHL, and lipolysis; 45% worsening of IMGU; and decreased expression of lipid metabolism genes. Smaller baseline adipose cell size and greater enlargement with weight gain predicted decline in IMGU, as did increase in IHL and VAT and decrease in insulin suppression of lipolysis. Weight gain in IS humans causes maladaptive changes in adipose cells, regional fat distribution, and insulin resistance. The correlation between development of insulin resistance and changes in adipose cell size, VAT, IHL, and insulin suppression of lipolysis highlight these factors as potential mediators between obesity and insulin resistance.


Subject(s)
Adiposity , Hyperphagia/pathology , Insulin Resistance , Intra-Abdominal Fat/pathology , Models, Biological , Overweight/pathology , Subcutaneous Fat/pathology , Adult , Body Mass Index , Cell Size/drug effects , Cohort Studies , Female , Gene Expression Regulation, Enzymologic , Humans , Hyperphagia/metabolism , Hyperphagia/physiopathology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Intra-Abdominal Fat/drug effects , Intra-Abdominal Fat/metabolism , Lipid Metabolism/drug effects , Liver/metabolism , Liver/pathology , Male , Middle Aged , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Overweight/etiology , Overweight/metabolism , Subcutaneous Fat/drug effects , Subcutaneous Fat/metabolism , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...