Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.573
Filter
1.
Inflamm Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724770

ABSTRACT

OBJECTIVE: Resident immune cells are at the forefront of sensory organ-specific signals, and changes in these cells are closely related to the aging process. The Sirt pathway can regulate NAD + metabolism during aging, thereby affecting the accumulation of ROS. However, the role of the Sirt pathway in resident immune cells in aged tissues is currently unclear. METHODS: We investigated Sirt1 signalling in resident immune cells during chronic inflammation in an aged mouse model. Integrated single-cell RNA sequencing data from young and aged mice were used to refine the characterization of immune cells in aged tissues RESULTS: We found that C1q + macrophages could affect chronic inflammation during aging. C1q + macrophages acted in an opposing manner to Il1b + macrophages and were responsible for anti-inflammatory effects during aging. Sirt1 agonists inhibited the decrease in C1qb in macrophages during aging, and anti-aging drugs could affect the expression of C1qb in macrophages via the Sirt1 pathway. CONCLUSIONS: In this study, we first identified the relevance of C1q + macrophages in chronic inflammation during aging. The potential anti-aging effect of C1q + macrophages was mediated by the Sirt1 pathway, suggesting new strategies for aging immunotherapy.

2.
Br J Surg ; 111(5)2024 May 03.
Article in English | MEDLINE | ID: mdl-38713611

ABSTRACT

BACKGROUND: It is unknown whether D2 lymphadenectomy + complete mesogastric excision for gastric cancer improves survival compared with just D2 lymphadenectomy. METHODS: Between September 2014 and June 2018, patients with advanced gastric cancer were randomly assigned (1 : 1) to laparoscopic D2 lymphadenectomy or D2 lymphadenectomy + complete mesogastric excision gastrectomy. The modified intention-to-treat population was defined as patients who had pathologically confirmed gastric adenocarcinoma (pT1 N1-3 M0 and pT2-4 N0-3 M0). The primary endpoint was 3-year disease-free survival. Secondary endpoints were the recurrence pattern and overall survival. RESULTS: The median follow-up of patients in the D2 lymphadenectomy group (169 patients) and patients in the D2 lymphadenectomy +complete mesogastric excision group (169 patients) was 55 (interquartile range 37-60) months and 51 (interquartile range 40-60) months respectively. Recurrence occurred in 50 patients in the D2 lymphadenectomy group (29.6%) versus 33 patients in the D2 lymphadenectomy + complete mesogastric excision group (19.5%) (P = 0.032). The 3-year disease-free survival was 75.5% (95% c.i. 68.3% to 81.3%) in the D2 lymphadenectomy group versus 85.0% (95% c.i. 78.7% to 89.6%) in the D2 lymphadenectomy + complete mesogastric excision group (log rank P = 0.042). The HR for recurrence in the D2 lymphadenectomy + complete mesogastric excision group versus the D2 lymphadenectomy group was 0.64 (95% c.i. 0.41 to 0.99) by Cox regression (P = 0.045). The 3-year overall survival rate was 77.5% (95% c.i. 70.4% to 83.1%) in the D2 lymphadenectomy group versus 85.8% (95% c.i. 79.6% to 90.2%) in the D2 lymphadenectomy + complete mesogastric excision group (log rank P = 0.058). The HR for death in the D2 lymphadenectomy + complete mesogastric excision group versus the D2 lymphadenectomy group was 0.64 (95% c.i. 0.41 to 1.02) (P = 0.058). CONCLUSION: Compared with conventional D2 dissection, D2 lymphadenectomy + complete mesogastric excision is associated with better disease-free survival, but there is no statistically significant difference in overall survival. REGISTRATION NUMBER: NCT01978444 (http://www.clinicaltrials.gov).


Subject(s)
Adenocarcinoma , Gastrectomy , Lymph Node Excision , Stomach Neoplasms , Humans , Stomach Neoplasms/surgery , Stomach Neoplasms/pathology , Stomach Neoplasms/mortality , Gastrectomy/methods , Lymph Node Excision/methods , Male , Female , Middle Aged , Adenocarcinoma/surgery , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Aged , Laparoscopy/methods , Disease-Free Survival , Neoplasm Recurrence, Local , Adult , Survival Rate , Neoplasm Staging
3.
Chemosphere ; : 142424, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795915

ABSTRACT

As emerging contaminants, micro- and nanoplastics (MNPs) can absorb and leach various toxic chemicals and ultimately endanger the health of the ecological environment and humans. With extensive research on MNPs, knowledge about MNPs in humans, especially their translocation of barriers and potential health effects, is of utmost importance. In this review, we collected literature published from 2000 to 2023, focusing on MNPs on their occurrence in humans, penetrating characteristics in the placental, blood-brain, and blood-testis barriers, and exposure effects on mammalian health. The characteristics and distributions of MNPs in human samples were analyzed, and the results demonstrated that MNPs were ubiquitous in most human samples, except for kidneys and cerebrospinal fluid. In addition, the phenomenon of MNPs crossing barriers and their underlying mechanisms were discussed. We also summarized the potential factors that may affect the barrier crossing and health effects of MNPs, including characteristics of MNPs, exposure doses, administration routes, exposure durations, co-exposure to other pollutants, and genetic predisposition. Exposure to MNPs may cause cytotoxicity, neurotoxicity, and developmental and reproductive toxicity in mammals. People are encouraged to reduce their exposure to MNPs to prevent these adverse health effects. Finally, we discussed the shortcomings of current research on MNPs in humans, providing a valuable reference for understanding and evaluating the potential health risks from MNP exposure in mammals, including humans.

4.
Oncol Lett ; 28(1): 315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38807670

ABSTRACT

Artesunate (ART), an antimalarial drug, has a broad spectrum of antitumour effects in cancer types such as esophageal and gastric cancer. However, evidence demonstrating the role of ART in cervical cancer cells is limited. In the present study, the inhibitory effect of ART on the growth of cervical cancer cells through the modulation of the cell cycle and apoptosis was investigated. The growth-inhibitory effect of ART on a cervical cancer cell line (SiHa) was detected using a Cell Counting Kit-8 assay after treatment with ART for 24 h, after which the half-maximal inhibitory concentration (IC50) was calculated. Using flow cytometry assays, apoptosis, the cell cycle, the levels of reactive oxygen species (ROS) and calcium (Ca2+) ions, as well as the mitochondrial membrane potential were evaluated in SiHa cells following treatment with ART for 24 and 48 h. The mRNA expression levels of Bcl2, Bcl-xl, (myeloid cell leukaemia 1) Mcl-1, Bcl2-like protein 11 (BIM), (Bcl2-related ovarian killer protein) Bok, Bax and (Bcl2 homologous antagonist/killer) Bak in SiHa cells were detected using reverse transcription-quantitative PCR. ART inhibited the growth of SiHa cells in a dose-dependent manner. The IC50 of ART in SiHa cells was 26.32 µg/ml. According to the IC50 value, 15, 30 and 100 µg/ml ART were selected for further experiments, and normal saline (0 µg/ml ART) was used as the control group. The results indicated that treatment with 15, 30 and 100 µg/ml ART for 24 and 48 h induced apoptosis, increased the levels of ROS, the levels of Ca2+ and the mRNA expression levels of BIM, Bok, Bax and Bak, but decreased the cell proliferation indices, the mitochondrial membrane potential and the mRNA expression levels of Bcl2, Bcl-xl and Mcl-1 in a dose- and time-dependent manner. In conclusion, ART inhibited the growth of SiHa cells and induced apoptosis via a mechanism associated with the regulation of Bcl2 family member expression, which was associated with the increase of the levels of ROS and Ca2+ and the reduction of the mitochondrial membrane potential.

5.
Biomater Sci ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808535

ABSTRACT

Expression of concern for 'A hypoxia-dissociable siRNA nanoplatform for synergistically enhanced chemo-radiotherapy of glioblastoma' by Yandong Xie, et al., Biomater. Sci., 2022, 10, 6791-6803, https://doi.org/10.1039/D2BM01145J.

6.
Heliyon ; 10(9): e30335, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38774079

ABSTRACT

Background: OA imposes a heavy burden on patients and society in that its mechanism is still unclear, and there is a lack of effective targeted therapy other than surgery. Methods: The osteoarthritis dataset GSE55235 was downloaded from the GEO database and analyzed for differential genes by limma package, followed by analysis of immune-related modules by xcell immune infiltration combined with the WGCNA method, and macrophage polarization-related genes were downloaded according to the Genecard database, and VennDiagram was used to determine their intersection. These genes were also subjected to gene ontology (GO), disease ontology (DO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional enrichment analyses. Using machine learning, the key osteoarthritis genes were finally screened. Using single gene GSEA and GSVA, we examined the significance of these key gene functions in immune cell and macrophage pathways. Next, we confirmed the correctness of the hub gene expression profile using the GSE55457 dataset and the ROC curve. Finally, we projected TF, miRNA, and possible therapeutic drugs using the miRNet, TargetScanHuman, ENCOR, and NetworkAnalyst databases, as well as Enrichr. Results: VennDiagram obtained 71 crossover genes for DEGs, WGCNA-immune modules, and Genecards; functional enrichment demonstrated NF-κB, IL-17 signaling pathway play an important role in osteoarthritis-macrophage polarization genes; machine learning finally identified CSF1R, CX3CR1, CEBPB, and TLR7 as hub genes; GSVA analysis showed that CSF1R, CEBPB play essential roles in immune infiltration and macrophage pathway; validation dataset GSE55457 analyzed hub genes were statistically different between osteoarthritis and healthy controls, and the AUC values of ROC for CSF1R, CX3CR1, CEBPB and TLR7 were more outstanding than 0.65. Conclusions: CSF1R, CEBPB, CX3CR1, and TLR7 are potential diagnostic biomarkers for osteoarthritis, and CSF1R and CEBPB play an important role in regulating macrophage polarization in osteoarthritis progression and are expected to be new drug targets.

8.
Aging (Albany NY) ; 162024 May 23.
Article in English | MEDLINE | ID: mdl-38787365

ABSTRACT

BACKGROUND: Acute myocardial infarction (AMI) is associated with high morbidity and mortality, and is associated with abnormal lipid metabolism. We identified lipid metabolism related genes as biomarkers of AMI, and explored their mechanisms of action. METHODS: Microarray datasets were downloaded from the GEO database and lipid metabolism related genes were obtained from Molecular Signatures Database. WGCNA was performed to identify key genes. We evaluated differential expression and performed ROC and ELISA analyses. We also explored the mechanism of AMI mediated by key genes using gene enrichment analysis. Finally, immune infiltration and pan-cancer analyses were performed for the identified key genes. RESULTS: TRL2, S100A9, and HCK were identified as key genes related to lipid metabolism in AMI. Internal and external validation (including ELISA) showed that these were good biomarkers of AMI. In addition, the results of gene enrichment analysis showed that the key genes were enriched in inflammatory response, immune system process, and tumor-related pathways. Finally, the results of immune infiltration showed that key genes were concentrated in neutrophils and macrophages, and pan-cancer analysis showed that the key genes were highly expressed in most tumors and were associated with poor prognosis. CONCLUSIONS: TLR2, S100A9, and HCK were identified as lipid metabolism related novel diagnostic biomarkers of AMI. In addition, AMI and tumors may be related through the inflammatory immune response.

9.
Am J Chin Med ; : 1-19, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38699996

ABSTRACT

Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.

10.
Life Sci ; 349: 122693, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710277

ABSTRACT

Ovarian dysfunction stands as a prevalent contributor to female infertility, with its etiology intertwined with genetic, autoimmune, and environmental factors. Within the ovarian follicles, granulosa cells (GCs) represent the predominant cell population. Alterations in GCs, notably oxidative stress (OS) and the consequential surge in reactive oxygen species (ROS), play pivotal roles in the orchestration of ovarian function. Nrf2aa, a newly identified upstream open reading frame (uORF), is situated within the 5' untranslated region (5'UTR) of sheep Nrf2 mRNA and is regulated by melatonin, a crucial intrafollicular antioxidant. In this study, we have noted that Nrf2aa has the capacity to encode a peptide and exerts a negative regulatory effect on the translation efficiency (TE) of the Nrf2 CDs region. Further in vitro experiments, we observed that interfering with Nrf2aa can enhance the cellular functionality of GCs under 3-np-induced oxidative stress, while overexpressing Nrf2aa has the opposite effect. Furthermore, overexpression of Nrf2aa counteracts the rescuing effect of melatonin on the cellular functions of GCs under oxidative stress conditions, including estrogen secretion, proliferation, apoptosis, and many more. Finally, we confirmed that Nrf2aa, by regulating the expression of key proteins in the Nrf2/KEAP1 signaling pathway, further modulates the antioxidant levels in GCs.

11.
Environ Int ; 187: 108719, 2024 May.
Article in English | MEDLINE | ID: mdl-38718677

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Subject(s)
Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
12.
Sci Total Environ ; 931: 172885, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38697546

ABSTRACT

Nanobubble (NB) technology has gained popularity in the environmental field owing to its distinctive characteristics and ecological safety. More recently, the application of NB technology in anaerobic digestion (AD) systems has been proven to promote substrate degradation and boost the production of biogas (H2 and/or CH4). This review presents the recent advancements in the application of NB technology in AD systems. Meanwhile, it also sheds light on the underlying mechanisms of NB technology that contribute to the enhanced biogas production from AD of organic solid wastes. Specifically, the working principles of the NB generator are first summarized, and then the structure of the NB generator is optimized to accommodate the demand for NB characteristics in the AD system. Subsequently, it delves into a detailed discussion of how the addition of nanobubble water (NBW) affects AD performance and the different factors that NB can potentially contribute. As a simple and environmentally friendly additive, NBW was commonly used in the AD process to enhance the fluidity and mass transfer characteristics of digestate. Additionally, NB has the potential to enhance the functionality of different types of microbial enzymes that play crucial roles in the AD process. This includes boosting extracellular hydrolase activities, optimizing coenzyme F420, and improving cellulase function. Finally, it is proposed that NBW has development potential for the pretreatment of substrate and inoculum, with future development being directed towards this aim.


Subject(s)
Biofuels , Refuse Disposal , Anaerobiosis , Refuse Disposal/methods , Solid Waste , Bioreactors
13.
Polymers (Basel) ; 16(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38794621

ABSTRACT

Bacterial infection is a common complication in bone defect surgery, in which infection by clinically resistant bacteria has been a challenge for the medical community. Given this emerging problem, the discovery of novel natural-type inhibitors of drug-resistant bacteria has become imperative. Brucine, present in the traditional Chinese herb Strychnine semen, is reported to exert analgesic and anti-inflammatory effects. Brucine's clinical application was limited because of its water solubility. We extracted high-purity BS by employing reflux extraction and crystallization, greatly improved its solubility, and evaluated its antimicrobial activity against E. coli and S. aureus. Importantly, we found that BS inhibited the drug-resistant strains significantly better than standard strains and achieved sterilization by disrupting the bacterial cell wall. Considering the safety concerns associated with the narrow therapeutic window of BS, a 3D BS-PLLA/PGA bone scaffold system was constructed with SLS technology and tested for its performance, bacteriostatic behaviors, and biocompatibility. The results have shown that the drug-loaded bone scaffolds had not only long-term, slow-controlled release with good cytocompatibility but also demonstrated significant antimicrobial activity in antimicrobial testing. The above results indicated that BS may be a potential drug candidate for the treatment of antibiotic-resistant bacterial infections and that scaffolds with enhanced antibacterial activity and mechanical properties may have potential applications in bone tissue engineering.

14.
Sci Total Environ ; 933: 173155, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38735323

ABSTRACT

Climate change has induced substantial impact on the gross primary productivity (GPP) of terrestrial ecosystems by affecting vegetation phenology. Nevertheless, it remains unclear which among the mean rates of grass greening (RG), yellowing (RY), and the length of growing season (LOS) exhibit stronger explanatory power for GPP variations, and how RG and RY affect GPP variations under warming scenarios. Here, we explored the relationship between RG, RY, LOS, and GPP in arid Central Asia (ACA) from 1982 to 2019, elucidating the response mechanisms of RG, RY, and GPP to the mean temperature (TMP), vapor pressure deficit (VPD), precipitation (PRE), and soil moisture (SM). The results showed that the multi-year average length of greening (LG) in ACA was 22.7 days shorter than that of yellowing (LY) and the multi-year average GPP during LG (GPPlg) was 38.28 g C m-2 d -1 more than that of during LY (GPPly). RG and RY were positively correlated with GPPlg and GPPly, although the degree of correlation between RG and GPPlg was higher than that between RY and GPPly. Increases in RG and RY contributed to an increase in GPPlg (55.44 % of annual GPP) and GPPly (35.44 % of annual GPP). The correlation between RG and GPPlg was the strongest (0.49), followed by RY and GPPly (0.33), and LOS and GPP was the weakest (0.21). TMP, VPD, PRE, and SM primarily affected GPP by influencing RG and RY, rather than direct effects. The positive effects of TMP during LG (TMPlg), PRE during LG (PRElg), and SM during LG (SMlg) facilitated increases in RG and GPPlg, and higher VPD during LY (VPDly) and lower PRE during LY (PREly) accelerated increases in RY. Our study elucidated the impact of vegetation growth rate on GPP, thus providing an alternate method of quantifying the relationship between vegetation phenology and GPP.


Subject(s)
Climate Change , Grassland , Seasons , Poaceae/growth & development , Asia, Central , Environmental Monitoring
15.
Phytomedicine ; 129: 155591, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692075

ABSTRACT

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Subject(s)
Acute Lung Injury , Gallic Acid , Lipopolysaccharides , Macrophages , Mice, Inbred C57BL , NF-kappa B , Animals , Acute Lung Injury/drug therapy , Acute Lung Injury/chemically induced , Mice , Gallic Acid/pharmacology , Gallic Acid/analogs & derivatives , Macrophages/drug effects , NF-kappa B/metabolism , Male , Signal Transduction/drug effects , Anti-Inflammatory Agents/pharmacology , Disease Models, Animal , Lung/drug effects , Lung/pathology , RAW 264.7 Cells , Interleukin-1beta/metabolism , Bronchoalveolar Lavage Fluid , Nitric Oxide Synthase Type II/metabolism , Interleukin-6/metabolism
16.
Technol Cancer Res Treat ; 23: 15330338241257490, 2024.
Article in English | MEDLINE | ID: mdl-38803001

ABSTRACT

Objectives: This study aimed to investigate the effect of specific small ubiquitin-like modifier (SUMO) proteases 1 (SENP1)-mediated deSUMOylation on the malignant behavior of glioma stem cells (GSCs) under hypoxia conditions and evaluate the clinical value of prevention in glioma patients. Introductions: Under hypoxic conditions, upregulated hypoxia-inducible factor 1α (HIF1α) expression in GSCs activates Wnt/ß-catenin signaling pathways, which provide rich nutritional support for glioblastoma (GBM). SENP1-mediated deSUMOylation stabilizes the expression of HIF1α and ß-catenin, leading to the occurrence of GSCs-initiated tumorigenesis. Targeting SENP1-mediated deSUMOylation may suppress the malignancy of GSCs and disrupt GBM progression. Methods: The expression of SENP1 in different World Health Organization grades was observed by immunohistochemistry and western blot. Lentivirus-packaged SENP1shRNA downregulated the expression of SENP1 in GSCs, and the downregulated results were verified by western blotting and polymerase chain reaction. The effects of LV-SENP1shRNA on the migration and proliferation of GSCs were detected by scratch and cloning experiments. The effect of LV-SENP1shRNA on the tumor formation ability of GSCs was observed in nude mice. Immunoprecipitation clarified the mechanism of SENP1 regulating the malignant behavior of GSCs under hypoxia. The correlation between the expression level of SENP1 and the survival of glioma patients was determined by statistical analysis. Results: SENP1 expression in GSCs derived from clinical samples was upregulated in GBM. SUMOylation was observed in GSCs in vitro, and deSUMOylation, accompanied by an increase in SENP1 expression, was induced by hypoxia. SENP1 expression was downregulated in GSCs with lentivirus-mediated stable transfection, which attenuated the proliferation and differentiation of GSCs, thus diminishing tumorigenesis. Mechanistically, HIF1α induced activation of Wnt/ß-catenin, which depended on SENP1-mediated deSUMOylation, promoting GSC-driven GBM growth under the hypoxia microenvironment. Conclusion: Our findings indicate that SENP1-mediated deSUMOylation as a feature of GSCs is essential for GBM maintenance, suggesting that targeting SENP1 against GSCs may effectively improve GBM therapeutic efficacy.


Subject(s)
Cell Proliferation , Cysteine Endopeptidases , Glioma , Neoplastic Stem Cells , Sumoylation , Humans , Animals , Cysteine Endopeptidases/metabolism , Cysteine Endopeptidases/genetics , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Mice , Glioma/pathology , Glioma/metabolism , Glioma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/genetics , Wnt Signaling Pathway , Female , Male , Cell Movement/genetics , Mice, Nude , Cell Hypoxia , Xenograft Model Antitumor Assays
17.
Open Life Sci ; 19(1): 20220802, 2024.
Article in English | MEDLINE | ID: mdl-38737103

ABSTRACT

Against the backdrop of rapid social economy and scientific and technological development, intelligent medical technology expanded based on the Internet plays a crucial role in the innovation and development of the modern medical industry. Intelligent medical technology has completely changed the fixed medical methods of the past, and it can solve the isolated defects between various unit systems, greatly improving the overall informatization level of hospitals. This article analyzed the clinical diagnosis, prevention, and treatment of neurodyspepsia syndrome (NDS) in intelligent medicine. Dyspepsia can cause palpitations, vomiting, abdominal distension, dizziness, and other symptoms so that it can cause discomfort and pain in the middle or around the epigastric region. Therefore, it is necessary to make a correct diagnosis of neurodyspepsia in order to reduce the discomfort of patients. Intelligent medical technology is of great significance in improving patients' symptoms. This study sets up a control group and an experimental group for the experiment. The control group used conventional medication technology, while the experimental group used intelligent medical technology to analyze the patient samples taken. By comparing the factors that affect patients with NDS, it was found that the physical function score of the experimental group was 6.3% lower than that of the control group. Intelligent medical technology has high diagnostic efficiency and can achieve rapid diagnosis of NDS, meeting the clinical diagnosis and prevention requirements of NDS.

18.
Heliyon ; 10(9): e29914, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38737285

ABSTRACT

This study was based on the use of whole-genome DNA methylation sequencing technology to identify DNA methylation biomarkers in tumor tissue that can predict the prognosis of patients with pancreatic cancer (PCa). TCGA database was used to download PCa-related DNA methylation and transcriptome atlas data. Methylation driver genes (MDGs) were obtained using the MethylMix package. Candidate genes in the MDGs were screened for prognostic relevance to PCa patients by univariate Cox analysis, and a prognostic risk score model was constructed based on the key MDGs. ROC curve analysis was performed to assess the accuracy of the prognostic risk score model. The effects of PIK3C2B knockdown on malignant phenotypes of PCa cells were investigated in vitro. A total of 2737 differentially expressed genes were identified, with 649 upregulated and 2088 downregulated, using 178 PCa samples and 171 normal samples. MethylMix was employed to identify 71 methylation-driven genes (47 hypermethylated and 24 hypomethylated) from 185 TCGA PCa samples. Cox regression analyses identified eight key MDGs (LEF1, ZIC3, VAV3, TBC1D4, FABP4, MAP3K5, PIK3C2B, IGF1R) associated with prognosis in PCa. Seven of them were hypermethylated, while PIK3C2B was hypomethylated. A prognostic risk prediction model was constructed based on the eight key MDGs, which was found to accurately predict the prognosis of PCa patients. In addition, the malignant phenotypes of PANC-1 cells were decreased after the knockdown of PIK3C2B. Therefore, the prognostic risk prediction model based on the eight key MDGs could accurately predict the prognosis of PCa patients.

19.
World Neurosurg ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697261

ABSTRACT

OBJECTIVE: To investigate whether risk of new vertebral compression fractures (NVCF) was associated with vicinity to treated vertebrae in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fractures (OVCFs). METHODS: All OVCFs (T6-L5) patients treated with PVP between January 2016 and December 2020 were retrospectively reviewed. Vicinity to treated vertebrae was defined as the number of vertebrae between an untreated and its closest treated level. The closest treated level was chosen as reference vertebra. Clinical, radiological and surgical parameters were compared between groups of reference vertebrae for each vicinity NVCF. RESULTS: Totally, 1348 patients with 1592 fractured and 14584 normal vertebrae were enrolled. NVCF was identified in 20.1% (271/1348) patients in 2.2% (319/14584) vertebrae in a mean follow-up time of 24.3±11.9 months. Rate of NVCF in vicinity 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 and 11 level were 4.6% (130/2808), 2.4% (62/2558), 1.8% (42/2365), 1.5% (31/2131), 1.3% (23/1739), 1.3% (17/1298), 0.8% (7/847), 0.9% (4/450), 0.8% (2/245), 0.9% (1/117) and 0% (0/26), respectively. Rate of NVCF in vicinity 1 level was significantly higher than that in vicinity 2, 3, 4, 5, 6, 7, 8 and 9 level, respectively. However, compared to reference vertebrae for vicinity 1 NVCF, any clinical, radiological and surgical parameters were not significantly different in those for vicinity 2, 3 and 4 NVCF, respectively. CONCLUSIONS: The closer vicinity to treated vertebrae in PVP, the higher rate of NVCF at follow-up. However, any clinical, radiological and surgical parameters might not matter in this phenomenon of vicinity-related NVCF.

20.
Risk Manag Healthc Policy ; 17: 1253-1261, 2024.
Article in English | MEDLINE | ID: mdl-38765780

ABSTRACT

Objectives: Sexual harassment (SH) is a prevalent issue in various professional fields worldwide. The current study aims to investigate the incidence of SH targeting psychiatrists in China and explore its impact on quality of life (QOL). Methods: A consecutive recruitment of 1093 psychiatrists was conducted from 6 hospitals in China. The recorded data included participants' socio-demographic characteristics, experiences of workplace SH within the previous year, and their QOL. SH comprised verbal harassment, physical harassment, and displaying of sexual organs. The Chinese version of the World Health Organization Quality of Life Brief Version (WHOQOL-BREF) was employed to assess QOL. We compared the demographic characteristics and QOL between the SH group and the non-SH group. Multiple logistic regression analysis was used to identify independent demographic correlates of SH. Results: In total, 13.8% (n = 151) of the psychiatrists reported SH, with 5.8% reporting it once, 4.4% reporting it twice, and 3.6% reporting it three times or more. Psychiatrists who had encountered SH exhibited lower QOL across social, psychological, physical, and environmental domains. Multiple logistic regression analysis revealed that young physicians and those with shorter work experience had a higher likelihood of experiencing SH. Conclusion: The high prevalence of SH among Chinese psychiatrists is of concern. Given its detrimental effects on the well-being of physicians and the quality of medical care they provide, it is crucial to develop specialized employee training programs for this population to effectively manage workplace SH.

SELECTION OF CITATIONS
SEARCH DETAIL
...