Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 809
Filter
1.
Angew Chem Int Ed Engl ; : e202405637, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825570

ABSTRACT

Directly coupling N2 and CO2 to synthesize urea by photocatalysis paves a sustainable route for urea synthesis, but its performance is limited by the competition of photogenerated electrons between N2 and CO2, as well as the underutilized photogenerated holes. Herein, we report an efficient urea synthesis process involving photogenerated electrons and holes in respectively converting CO2 and N2 over a redox heterojunction consisting of WO3 and Ni single-atom-decorated CdS (Ni1-CdS/WO3). For the photocatalytic urea synthesis from N2 and CO2 in pure water, Ni1-CdS/WO3 attained a urea yield rate of 78 µM·h-1 and an apparent quantum yield of 0.15 % at 385 nm, which ranked among the best photocatalytic urea synthesis performance reported. Mechanistic studies reveal that the N2 was converted into NO species by ⋅OH radicals generated from photogenerated holes over the WO3 component, meanwhile, the CO2 was transformed into *CO species over the Ni site by photogenerated electrons. The generated NO and *CO species were further coupled to form *OCNO intermediate, then gradually transformed into urea. This work emphasizes the importance of reasonably utilizing photogenerated holes in photocatalytic reduction reactions.

2.
Eur J Surg Oncol ; 50(7): 108362, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38704899

ABSTRACT

OBJECTIVE: This study aims to establish a machine learning (ML) model for predicting the risk of liver and/or lung metastasis in colorectal cancer (CRC). METHODS: Using the National Institutes of Health (NIH)'s Surveillance, Epidemiology, and End Results (SEER) database, a total of 51265 patients with pathological diagnosis of colorectal cancer from 2010 to 2015 were extracted for model development. On this basis, We have established 7 machine learning algorithm models. Evaluate the model based on accuracy, and AUC of receiver operating characteristics (ROC) and explain the relationship between clinical pathological features and target variables based on the best model. We validated the model among 196 colorectal cancer patients in Beijing Electric Power Hospital of Capital Medical University of China to evaluate its performance and universality. Finally, we have developed a network-based calculator using the best model to predict the risk of liver and/or lung metastasis in colorectal cancer patients. RESULTS: 51265 patients were enrolled in the study, of which 7864 (15.3 %) had distant liver and/or lung metastasis. RF had the best predictive ability, In the internal test set, with an accuracy of 0.895, AUC of 0.956, and AUPR of 0.896. In addition, the RF model was evaluated in the external validation set with an accuracy of 0.913, AUC of 0.912, and AUPR of 0.611. CONCLUSION: In this study, we constructed an RF algorithm mode to predict the risk of colorectal liver and/or lung metastasis, to assist doctors in making clinical decisions.

3.
Front Bioeng Biotechnol ; 12: 1376596, 2024.
Article in English | MEDLINE | ID: mdl-38798951

ABSTRACT

Purpose: Previous studies have confirmed the advantages and disadvantages of autogenous iliac bone and nano-hydroxyapatite/polyamide 66 (n-HA/PA66) cage. However, there is no conclusive comparison between the efficacy of the two implant materials in spinal tuberculosis bone graft fusion. The aim of this study was to analyze the mid-to long-term clinical and radiologic outcomes between n-HA/PA66 cage and autogenous iliac bone for anterior reconstruction application of spinal defect for thoracolumbar tuberculosis. Methods: We retrospectively reviewed all patients who underwent anterior debridement and strut graft with n-HA/PA66 cage or iliac bone combined with anterior instrumentations between June 2009 and June 2014. One-to-one nearest-neighbor propensity score matching (PSM) was used to match patients who underwent n-HA/PA66 cage to those who underwent iliac bone. Clinical outcomes were assessed using the Japanese Orthopaedic Association (JOA) and visual analogue score (VAS). Radiographic evaluations included cage subsidence and segmental angle. Results: At the end of the PSM analysis, 16 patients from n-HA/PA66 cage group were matched to 16 patients in Iliac bone group. The C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) values in the n-HA/PA66 group decreased significantly from 33.19 ± 10.89 and 46.63 ± 15.65 preoperatively, to 6.56 ± 2.48 and 9.31 ± 3.34 at the final follow-up, respectively (p < 0.001). There were no significant differences in the CRP and ESR values between the two groups at the final follow-up. The VAS and JOA scores in the iliac bone and n-HA/PA66 group were significantly improved at the 3-month follow-up postoperatively (both p < 0.001). Then, improvements of VAS and JOA scores continue long at final follow-up. However, there were no significant differences in the VAS and JOA scores at any time point between the two groups (p > 0.05). Although the segmental angle (SA) significantly increased after surgery in both groups, there was no significant difference at any time point after surgery (p > 0.05). There were no significant differences in the cage subsidence and fusion time between the two groups. Conclusion: Overall, our data suggest that the n-HA/PA66 cage outcomes are comparable to those in the autogenous iliac bone, with a similar high fusion rate as autogenous iliac bone.

4.
Orthop Surg ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769783

ABSTRACT

OBJECTIVES: Currently, anterior-only (AO), posterior-only, and combined anterior-posterior spinal fusions are common strategies for treating cervical kyphosis in patients with neurofibromatosis-1 NF-1. Nevertheless, the choice of surgical strategy remains a topic of controversy. The aim of our study is to evaluate the safety and effectiveness of anterior decompression and spinal reconstruction for the treatment of cervical kyphosis in patients with NF-1. METHODS: Twelve patients with NF-1-associated cervical kyphotic deformity were reviewed retrospectively between January 2010 and April 2020. All patients underwent AO correction and reconstruction. The X-ray was followed up in all these patients to assess the preoperative and postoperative local kyphosis angle (LKA), the global kyphosis angle (GKA), the sagittal vertical axis, and the T1 slope. The visual analog scale score, Japanese Orthopedic Association (JOA) score, and neck disability index (NDI) score were used to evaluate the improvement inclinical symptoms. The results of the difference in improvement from preoperatively to the final follow-up assessment were assessed using a paired t-test or Mann-Whitney U-test. RESULTS: The LKA and GKA decreased from the preoperative average of 64.42 (range, 38-86) and 35.50 (range, 10-81) to an average of 16.83 (range, -2 to 46) and 4.25 (range, -22 to 39) postoperatively, respectively. The average correction rates of the LKA and GKA were 76.11% and 111.97%, respectively. All patients had achieved satisfactory relief of neurological symptoms (p < 0.01). JOA scores were improved from 10.42 (range, 8-16) preoperatively to 15.25 (range, 11-18) at final follow-up (p < 0.01). NDI scores were decreased from an average of 23.25 (range, 16-34) preoperatively to an average of 7.08 (range, 3-15) at the final follow-up (p < 0.01). CONCLUSION: Anterior-only correction and reconstruction is a safe and effective method for correcting cervical kyphosis in NF-1 patients. In fixed cervical kyphosis cases, preoperative skull traction should also be considered.

5.
ACS Appl Mater Interfaces ; 16(19): 24384-24397, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38709640

ABSTRACT

Vascularization and inflammation management are essential for successful bone regeneration during the healing process of large bone defects assisted by artificial implants/fillers. Therefore, this study is devoted to the optimization of the osteogenic microenvironment for accelerated bone healing through rapid neovascularization and appropriate inflammation inhibition that were achieved by applying a tantalum oxide (TaO)-based nanoplatform carrying functional substances at the bone defect. Specifically, TaO mesoporous nanospheres were first constructed and then modified by functionalized metal ions (Mg2+) with the following deferoxamine (DFO) loading to obtain the final product simplified as DFO-Mg-TaO. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that the product was homogeneously dispersed hollow nanospheres with large specific surface areas and mesoporous shells suitable for loading Mg2+ and DFO. The biological assessments indicated that DFO-Mg-TaO could enhance the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The DFO released from DFO-Mg-TaO promoted angiogenetic activity by upregulating the expressions of hypoxia-inducible factor-1 (HIF-1α) and vascular endothelial growth factor (VEGF). Notably, DFO-Mg-TaO also displayed anti-inflammatory activity by reducing the expressions of pro-inflammatory factors, benefiting from the release of bioactive Mg2+. In vivo experiments demonstrated that DFO-Mg-TaO integrated with vascular regenerative, anti-inflammatory, and osteogenic activities significantly accelerated the reconstruction of bone defects. Our findings suggest that the optimized DFO-Mg-TaO nanospheres are promising as multifunctional fillers to speed up the bone healing process.


Subject(s)
Bone Regeneration , Deferoxamine , Magnesium , Mesenchymal Stem Cells , Oxides , Tantalum , Deferoxamine/chemistry , Deferoxamine/pharmacology , Bone Regeneration/drug effects , Tantalum/chemistry , Animals , Oxides/chemistry , Oxides/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effects , Neovascularization, Physiologic/drug effects , Rats , Mice , Rats, Sprague-Dawley , Cell Proliferation/drug effects , Angiogenesis
6.
J Am Chem Soc ; 146(19): 13527-13535, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38691638

ABSTRACT

Closing the carbon and nitrogen cycles by electrochemical methods using renewable energy to convert abundant or harmful feedstocks into high-value C- or N-containing chemicals has the potential to transform the global energy landscape. However, efficient conversion avenues have to date been mostly realized for the independent reduction of CO2 or NO3-. The synthesis of more complex C-N compounds still suffers from low conversion efficiency due to the inability to find effective catalysts. To this end, here we present amorphous bismuth-tin oxide nanosheets, which effectively reduce the energy barrier of the catalytic reaction, facilitating efficient and highly selective urea production. With enhanced CO2 adsorption and activation on the catalyst, a C-N coupling pathway based on *CO2 rather than traditional *CO is realized. The optimized orbital symmetry of the C- (*CO2) and N-containing (*NO2) intermediates promotes a significant increase in the Faraday efficiency of urea production to an outstanding value of 78.36% at -0.4 V vs RHE. In parallel, the nitrogen and carbon selectivity for urea formation is also enhanced to 90.41% and 95.39%, respectively. The present results and insights provide a valuable reference for the further development of new catalysts for efficient synthesis of high-value C-N compounds from CO2.

7.
Mol Biotechnol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664305

ABSTRACT

This study aimed to investigate the mechanisms of LACTB2 in colorectal cancer (CRC). Microarrays and sequencing data of CRC were acquired from UCSC Xena, GTEx, Gene Expression Omnibus, and TCGA. Pooled analysis of the mRNA expression of LACTB2 in CRC was performed using Stata software. The protein expression of LACTB2 in CRC tissues was evaluated by immunohistochemistry. The relationship between immune cell infiltration and LACTB2 expression was investigated using CIBERSORT. The potential signaling pathways and biological mechanisms of LACTB2 were explored using GSEA, KEGG, and GO. Subsequently, further screening of small molecular compounds with potential therapeutic effects on CRC was conducted through the HERB database, followed by molecular docking studies of these compounds with the LACTB2 protein. The integration and analysis of expression data obtained from 2294 CRC samples and 1286 noncancerous colorectal samples showed that LACTB2 was highly expressed in CRC. Immunohistochemistry performed on in-house tissue samples confirmed that LACTB2 protein expression was upregulated in CRC. CIBERSORT revealed lower B cell infiltration levels in the high LACTB2 expression group than in the low expression group. GO, KEGG, and GSEA analyses showed that LACTB2 expression and genes positively correlating with it were mainly related to DNA synthesis and repair, mitochondrial translational elongation and translational termination, phosphorylation, and mTORC1 signaling. Finally, molecular docking simulations confirmed the ability of quercitin to target and bind to LACTB2. This is the first study to demonstrate that LACTB2 is upregulated in CRC. LACTB2 promotes colorectal tumorigenesis and tumor progression.

8.
Ophthalmology ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38661617
9.
Sci Bull (Beijing) ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38616150

ABSTRACT

Traditional dual-ion lithium salts have been widely used in solid polymer lithium-metal batteries (LMBs). Nevertheless, concentration polarization caused by uncontrolled migration of free anions has severely caused the growth of lithium dendrites. Although single-ion conductor polymers (SICP) have been developed to reduce concentration polarization, the poor ionic conductivity caused by low carrier concentration limits their application. Herein, a dual-salt quasi-solid polymer electrolyte (QSPE), containing the SICP network as a salt and traditional dual-ion lithium salt, is designed for retarding the movement of free anions and simultaneously providing sufficient effective carriers to alleviate concentration polarization. The dual salt network of this designed QSPE is prepared through in-situ crosslinking copolymerization of SICP monomer, regular ionic conductor, crosslinker with the presence of the dual-ion lithium salt, delivering a high lithium-ion transference number (0.75) and satisfactory ionic conductivity (1.16 × 10-3 S cm-1 at 30 °C). Comprehensive characterizations combined with theoretical calculation demonstrate that polyanions from SICP exerts a potential repulsive effect on the transport of free anions to reduce concentration polarization inhibiting lithium dendrites. As a consequence, the Li||LiFePO4 cell achieves a long-cycle stability for 2000 cycles and a 90% capacity retention at 30 °C. This work provides a new perspective for reducing concentration polarization and simultaneously enabling enough lithium-ions migration for high-performance polymer LMBs.

10.
Adv Mater ; : e2403229, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598727

ABSTRACT

Li-CO2 batteries are regarded as promising high-energy-density energy conversion and storage devices, but their practicability is severely hindered by the sluggish CO2 reduction/evolution reaction (CORR/COER) kinetics. Due to the various crystal structures and unique electronic configuration, Mn-based cathode catalysts have shown considerable competition to facilitate CORR/COER. However, the specific active sites and regulation principle of Mn-based catalysts remain ambiguous and limited. Herein, this work designs novel Mn dual-active sites (MOC) supported on N-doped carbon nanofibers and conduct a comprehensive investigation into the underlying relationship between different Mn active sites and their electrochemical performance in Li-CO2 batteries. Impressively, this work finds that owing to the in situ generation and stable existence of Mn(III), MOC undergoes obvious electrochemical reconstruction during battery cycling. Moreover, a series of characterizations and theoretical calculations demonstrate that the different electronic configurations and coordination environments of Mn(II) and Mn(III) are conducive to promoting CORR and COER, respectively. Benefiting from such a modulating behavior, the Li-CO2 batteries deliver a high full discharge capacity of 10.31 mAh cm-2, and ultra-long cycle life (327 cycles/1308 h). This fundamental understanding of MOC reconstruction and the electrocatalytic mechanisms provides a new perspective for designing high-performance multivalent Mn-integrated hybrid catalysts for Li-CO2 batteries.

11.
Heliyon ; 10(7): e28733, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38576558

ABSTRACT

Objectives: Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory disorder characterized by progressive airflow limitation. This meta-analysis aims to evaluate the effectiveness of respiratory muscle training (RMT) on key pulmonary function parameters, inspiratory muscle strength and quality of life in patients with stable COPD. Methods: A comprehensive search was conducted in the databases including PubMed, Cochrane, Web of Science, Embase, and ClinicalTrials.gov, from their inception to June 12, 2023. Randomized controlled trials (RCTs) evaluating the impact of RMT on stable COPD were included for meta-analysis. Results: In total, 12 RCTs involving 453 participants were included in the meta-analysis. RMT demonstrated a significant increase in maximal inspiratory pressure (PImax, MD, 95% CI: 14.34, 8.17 to 20.51, P < 0.001) but not on maximal expiratory pressure (PEmax). No significant improvement was observed in 6-Min walk test (6MWT), dyspnea, forced expiratory volume in 1 s (FEV1), forced vital capacity ratio (FVC) and quality of life between RMT and control groups. However, subgroup analysis revealed a significant negative effect of RMT alone on FEV1/FVC (MD, 95% CI: 2.59, -5.11 to -0.06, P = 0.04). When RMT was combined with other interventions, improvements in FEV1/FVC and FEV1 were found, although not statistically significant. Conclusion: RMT can effectively improve maximal inspiratory pressure in stable COPD patients, but the effect is slight in improving lung function, dyspnea and quality of life. It is recommended to combine with other treatment strategies to comprehensively improve the prognosis of COPD patients.

14.
Nat Commun ; 15(1): 3299, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632245

ABSTRACT

Improving the absorption of electromagnetic waves at low-frequency bands (2-8 GHz) is crucial for the increasing electromagnetic (EM) pollution brought about by the innovation of the fifth generation (5G) communication technology. However, the poor impedance matching and intrinsic attenuation of material in low-frequency bands hinders the development of low-frequency electromagnetic wave absorbing (EMWA) materials. Here we propose an interface-induced dual-pinning mechanism and establish a magnetoelectric bias interface by constructing bilayer core-shell structures of NiFe2O4 (NFO)@BiFeO3 (BFO)@polypyrrole (PPy). Such heterogeneous interface could induce distinct magnetic pinning of the magnetic moment in the ferromagnetic NFO and dielectric pinning of the dipole rotation in PPy. The establishment of the dual-pinning effect resulted in optimized impedance and enhanced attenuation at low-frequency bands, leading to better EMWA performance. The minimum reflection loss (RLmin) at thickness of 4.43 mm reaches -65.30 dB (the optimal absorption efficiency of 99.99997%), and the effective absorption bandwidth (EAB) can almost cover C-band (4.72 ~ 7.04 GHz) with low filling of 15.0 wt.%. This work proposes a mechanism to optimize low-frequency impedance matching with electromagnetic wave (EMW) loss and pave an avenue for the research of high-performance low-frequency absorbers.

15.
J Phys Chem Lett ; 15(10): 2859-2866, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38445979

ABSTRACT

Transition metal hydr(oxy)oxides (TMHs) are considered efficient electrocatalysts for the oxygen evolution reaction (OER) under alkaline conditions. Toward identification of potential descriptors to circumvent the scaling relation limit for the OER, first-principles calculations were used to quantify the effects on the overpotential of different s (Mg), p (Al), and d (Ti, V, Cr, Fe, Co, Sc, and Zn) electron dopants in Ni-based TMHs. Both the adsorbate evolution mechanism (AEM) and the lattice oxygen-mediated mechanism (LOM) were examined. The results demonstrate that the formation energy of oxygen vacancies (EVO) is strongly affected by the chemical nature of the dopants. A linear relationship is identified between EVO and the free energy difference for the oxygen-oxygen coupling. A descriptor could be employed to discriminate whether the LOM is energetically favored over the AEM. These findings fill existing gaps in appropriate yet computationally light descriptors for direct identification between the AEM and LOM.

17.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316711

ABSTRACT

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Subject(s)
Antioxidants , Biosensing Techniques , Peroxidase , Hydrogen Peroxide/analysis , Zirconium , Carbon , Electrodes , Peroxidases , Oxygen , Tea , Biosensing Techniques/methods , Electrochemical Techniques/methods
18.
Sci Bull (Beijing) ; 69(8): 1100-1108, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38423872

ABSTRACT

Catalytic conversion of nitrate (NO3-) pollutants into ammonia (NH3) offers a sustainable and promising route for both wastewater treatment and NH3 synthesis. Alkali cations are prevalent in nitrate solutions, but their roles beyond charge balance in catalytic NO3- conversion have been generally ignored. Herein, we report the promotion effect of K+ cations in KNO3 solution for NO3- reduction over a TiO2-supported Ni single-atom catalyst (Ni1/TiO2). For photocatalytic NO3- reduction reaction, Ni1/TiO2 exhibited a 1.9-fold NH3 yield rate with nearly 100% selectivity in KNO3 solution relative to that in NaNO3 solution. Mechanistic studies reveal that the K+ cations from KNO3 gradually bonded with the surface of Ni1/TiO2, in situ forming a K-O-Ni moiety during reaction, whereas the Na+ ions were unable to interact with the catalyst in NaNO3 solution. The charge accumulation on the Ni sites induced by the incorporation of K atom promoted the adsorption and activation of NO3-. Furthermore, the K-O-Ni moiety facilitated the multiple proton-electron coupling of NO3- into NH3 by stabilizing the intermediates.

20.
Ophthalmology ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38372678
SELECTION OF CITATIONS
SEARCH DETAIL
...