Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.881
Filter
1.
Bull Environ Contam Toxicol ; 112(6): 83, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822863

ABSTRACT

To investigate the toxicological effects of polystyrene microplastics (PS-MPs), cadmium (Cd), and their combined contamination on the growth and physiological responses of V. faba seedlings, this experiment employed a hydroponic method. The Hoagland nutrient solution served as the control, changes in root growth, physiological and biochemical indicators of V. faba seedlings under different concentrations of PS-MPs (10, 100 mg/L) alone and combined with 0.5 mg/L Cd. The results demonstrated that the root biomass, root vitality, generation rate of superoxide radicals (O2·-), malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity increased with increasing concentration under the influence of PS-MPs alone, while the soluble sugar content and peroxidase (POD) activity decreased. In the combined treatment with Cd, the trends of these indicators are generally similar to the PS-MPs alone treatment group. However, root vitality and SOD activity showed an inverse relationship with the concentration of PS-MPs. Furthermore, laser confocal and electron microscopy scanning revealed that the green fluorescent polystyrene microspheres entered the root tips of the V. faba and underwent agglomeration in the treatment group with a low concentration of PS-MPs alone and a high concentration of composite PS-MPs with Cd.


Subject(s)
Cadmium , Microplastics , Seedlings , Superoxide Dismutase , Vicia faba , Vicia faba/drug effects , Vicia faba/growth & development , Seedlings/drug effects , Seedlings/growth & development , Cadmium/toxicity , Microplastics/toxicity , Superoxide Dismutase/metabolism , Malondialdehyde/metabolism , Water Pollutants, Chemical/toxicity , Plant Roots/drug effects , Plant Roots/growth & development
2.
Front Cell Dev Biol ; 12: 1381362, 2024.
Article in English | MEDLINE | ID: mdl-38699158

ABSTRACT

Background: The COBLL1 gene has been implicated in human central obesity, fasting insulin levels, type 2 diabetes, and blood lipid profiles. However, its molecular mechanisms remain largely unexplored. Methods: In this study, we established cobll1a mutant lines using the CRISPR/Cas9-mediated gene knockout technique. To further dissect the molecular underpinnings of cobll1a during early development, transcriptome sequencing and bioinformatics analysis was employed. Results: Our study showed that compared to the control, cobll1a -/- zebrafish embryos exhibited impaired development of digestive organs, including the liver, intestine, and pancreas, at 4 days post-fertilization (dpf). Transcriptome sequencing and bioinformatics analysis results showed that in cobll1a knockout group, the expression level of genes in the Retinoic Acid (RA) signaling pathway was affected, and the expression level of lipid metabolism-related genes (fasn, scd, elovl2, elovl6, dgat1a, srebf1 and srebf2) were significantly changed (p < 0.01), leading to increased lipid synthesis and decreased lipid catabolism. The expression level of apolipoprotein genes (apoa1a, apoa1b, apoa2, apoa4a, apoa4b, and apoea) genes were downregulated. Conclusion: Our study suggest that the loss of cobll1a resulted in disrupted RA metabolism, reduced lipoprotein expression, and abnormal lipid transport, therefore contributing to lipid accumulation and deleterious effects on early liver development.

3.
Gynecol Endocrinol ; 40(1): 2351525, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38726683

ABSTRACT

OBJECTIVE: Stable luteal cell function is an important prerequisite for reproductive ability and embryonic development. However, luteal insufficiency seriously harms couples who have the desire to have a pregnancy, and the most important thing is that there is no complete solution. In addition, Vaspin has been shown to have regulatory effects on luteal cells, but the complex mechanisms involved have not been fully elucidated. Therefore, this study aimed to explore the effect of Vaspin on rat luteal cells and its mechanism. METHODS: Granulosa lutein cells separated from the ovary of female rats were incubated for 24h with gradient concentrations of Vaspin, and granulosa lutein cells incubated with 0.5% bovine serum albumin were used as controls. The proliferation, apoptosis, angiogenesis, progesterone (P4) and estradiol (E2) were detected by CCK-8, Anneixn-FITC/PI staining, angiogenesis experiment and ELISA. Western blot was applied to observe the expression levels of proteins related to cell proliferation, apoptosis, angiogenesis and MEK/MAPK signaling pathway. RESULTS: Compared with the Control group, Vaspin could significantly up-regulate the proliferation of granulosa lutein cells and reduce the apoptosis. Moreover, Vaspin promoted the angiogenesis of granulosa lutein cells and the production of P4 and E2 in a concentration-dependent manner. Furthermore, Vaspin up-regulated the CyclinD1, CyclinB1, Bcl2, VEGFA and FGF-2 expression in granulosa lutein cells, and down-regulated the level of Bax. Also, Vaspin increased the p-MEK1 and p-p38 levels. CONCLUSION: Vaspin can up-regulate the proliferation and steroidogenesis of rat luteal cells and reduce apoptosis, which may be related to the influence of MEK/MAPK activity.


Subject(s)
Apoptosis , Cell Proliferation , Luteal Cells , Progesterone , Serpins , Animals , Female , Cell Proliferation/drug effects , Serpins/metabolism , Serpins/pharmacology , Rats , Luteal Cells/drug effects , Luteal Cells/metabolism , Apoptosis/drug effects , Progesterone/pharmacology , Estradiol/pharmacology , Cells, Cultured , Rats, Sprague-Dawley , MAP Kinase Signaling System/drug effects , Neovascularization, Physiologic/drug effects
4.
FEBS J ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708718

ABSTRACT

Although, superkiller complex protein 8 (SKI8), previously known as WDR61 has been identified and mapped in breast tumor, little is currently known about its function. This study aims to elucidate the role of WDR61 in breast tumor development and its potential as a therapeutic target. Here, we show that tamoxifen-induced knockout of Wdr61 reduces the risk of breast tumors, resulting in smaller tumor size and weight, and improved overall survival. Furthermore, we show that knockdown of WDR61 compromises the proliferation of breast tumor cells with reduced colony-forming capacity. Further investigations demonstrate that the protective effect of WDR61 loss on breast tumor development is due to genomic instability. Mechanistic studies reveal that WDR61 interacts with the R-loop, and loss of WDR61 leads to R-loops accumulation in breast tumor cells, causing DNA damage and subsequent inhibition of cell proliferation. In summary, this study highlights the critical dependence of breast tumors on WDR61, which suppresses R-loop and counteracts endogenous DNA damage in tumor cells.

5.
Polymers (Basel) ; 16(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38732668

ABSTRACT

Thermal-mechanical coupling during the molding process can cause compressive yield in the polymer foam core and then affect the molding quality of the sandwich structure. This work investigates the compressive mechanical properties and failure mechanism of polymethacrylimide (PMI) foam in the molding temperature range of 20-120 °C. First, the DMA result indicates that PMI foam has minimal mechanical loss in the 20~120 °C range and can be regarded as an elastoplastic material, and the TGA curve further proves that the PMI foam is thermally stable within 120 °C. Then, the compression results show that compared with 20 °C, the yield stress and elastic modulus of PMI foam decrease by 22.0% and 17.5% at 80 °C and 35.2% and 31.4% at 120 °C, respectively. Meanwhile, the failure mode changes from brittle fracture to plastic yield at about 80 °C. Moreover, a real representative volume element (rRVE) of PMI foam is established by using Micro-CT and Avizo 3D reconstruction methods, and the simulation results indicate that PMI foam mainly shows brittle fractures at 20 °C, while both brittle fractures and plastic yield occur at 80 °C, and most foam cells undergo plastic yield at 120 °C. Finally, the simulation based on a single-cell RVE reveals that the air pressure inside the foam has an obvious influence of about 6.7% on the yield stress of PMI foam at 80 °C (brittle-plastic transition zone).

6.
Sci Bull (Beijing) ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38760248

ABSTRACT

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.

7.
Front Neurosci ; 18: 1401530, 2024.
Article in English | MEDLINE | ID: mdl-38741786

ABSTRACT

Introduction: Sleep insufficiency has been linked to an increased risk of high blood pressure and cardiovascular diseases. Emerging studies have demonstrated that impaired baroreflex sensitivity (BRS) is involved in the adverse cardiovascular effects caused by sleep deprivation, however, the underlying mechanisms remain unknown. Therefore, the present study aims to clarify the role of abnormal renin-angiotensin system in the nucleus tractus solitarii (NTS) in impaired BRS induced by sleep deprivation. Methods: Rats were randomly divided into two groups: normal sleep (Ctrl) and chronic sleep deprivation (CSD) group. Rats were sleep deprived by an automated sleep deprivation system. The blood pressure, heart rate, BRS, the number of c-Fos positive cells and the expression of angiotensin (Ang) II subtype 1 receptors (AT1R) in the NTS of rats were assessed. Results: Compared to Ctrl group, CSD group exhibited a higher blood pressure, heart rate, and reduced BRS. Moreover, the number of c-Fos positive cells and local field potential in the NTS in CSD group were increased compared with the Ctrl group. It was shown that the expression of the AT1R and the content of Ang II and the ratio of Ang II to Ang-(1-7) were increased in the NTS of rats in CSD group compared to Ctrl group. In addition, microinjection of losartan into the NTS significantly improved the impaired BRS caused by sleep deprivation. Discussion: In conclusion, these data suggest that the elevated AT1R expression in the NTS mediates the reduced BRS induced by chronic sleep deprivation.

8.
Small Methods ; : e2400291, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38779741

ABSTRACT

Triple-negative breast cancer (TNBC) remains a significant challenge in terms of treatment, with limited efficacy of chemotherapy due to side effects and acquired drug resistance. In this study, a threose nucleic acid (TNA)-mediated antisense approach is employed to target therapeutic Akt genes for TNBC therapy. Specifically, two new TNA strands (anti-Akt2 and anti-Akt3) are designed and synthesized that specifically target Akt2 and Akt3 mRNAs. These TNAs exhibit exceptional enzymatic resistance, high specificity, enhance binding affinity with their target RNA molecules, and improve cellular uptake efficiency compared to natural nucleic acids. In both 2D and 3D TNBC cell models, the TNAs effectively inhibit the expression of their target mRNA and protein, surpassing the effects of scrambled TNAs. Moreover, when administered to TNBC-bearing animals in combination with lipid nanoparticles, the targeted anti-Akt TNAs lead to reduced tumor sizes and decreased target protein expression compared to control groups. Silencing the corresponding Akt genes also promotes apoptotic responses in TNBC and suppresses tumor cell proliferation in vivo. This study introduces a novel approach to TNBC therapy utilizing TNA polymers as antisense materials. Compared to conventional miRNA- and siRNA-based treatments, the TNA system holds promise as a cost-effective and scalable platform for TNBC treatment, owing to its remarkable enzymatic resistance, inexpensive synthetic reagents, and simple production procedures. It is anticipated that this TNA-based polymeric system, which targets anti-apoptotic proteins involved in breast tumor development and progression, can represent a significant advancement in the clinical development of effective antisense materials for TNBC, a cancer type that lacks effective targeted therapy.

9.
J Virol ; : e0050724, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775482

ABSTRACT

Viruses employ a series of diverse translational strategies to expand their coding capacity, which produces viral proteins with common domains and entangles virus-host interactions. P3N-PIPO, which is a transcriptional slippage product from the P3 cistron, is a potyviral protein dedicated to intercellular movement. Here, we show that P3N-PIPO from watermelon mosaic virus (WMV) triggers cell death when transiently expressed in Cucumis melo accession PI 414723 carrying the Wmr resistance gene. Surprisingly, expression of the P3N domain, shared by both P3N-PIPO and P3, can alone induce cell death, whereas expression of P3 fails to activate cell death in PI 414723. Confocal microscopy analysis revealed that P3N-PIPO targets plasmodesmata (PD) and P3N associates with PD, while P3 localizes in endoplasmic reticulum in melon cells. We also found that mutations in residues L35, L38, P41, and I43 of the P3N domain individually disrupt the cell death induced by P3N-PIPO, but do not affect the PD localization of P3N-PIPO. Furthermore, WMV mutants with L35A or I43A can systemically infect PI 414723 plants. These key residues guide us to discover some WMV isolates potentially breaking the Wmr resistance. Through searching the NCBI database, we discovered some WMV isolates with variations in these key sites, and one naturally occurring I43V variation enables WMV to systemically infect PI 414723 plants. Taken together, these results demonstrate that P3N-PIPO, but not P3, is the avirulence determinant recognized by Wmr, although the shared N terminal P3N domain can alone trigger cell death.IMPORTANCEThis work reveals a novel viral avirulence (Avr) gene recognized by a resistance (R) gene. This novel viral Avr gene is special because it is a transcriptional slippage product from another virus gene, which means that their encoding proteins share the common N-terminal domain but have distinct C-terminal domains. Amazingly, we found that it is the common N-terminal domain that determines the Avr-R recognition, but only one of the viral proteins can be recognized by the R protein to induce cell death. Next, we found that these two viral proteins target different subcellular compartments. In addition, we discovered some virus isolates with variations in the common N-terminal domain and one naturally occurring variation that enables the virus to overcome the resistance. These results show how viral proteins with common domains interact with a host resistance protein and provide new evidence for the arms race between plants and viruses.

10.
Angew Chem Int Ed Engl ; : e202406693, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781083

ABSTRACT

Apart from electrode material modification, architecture design and optimization are important approaches for improving lithium-sulfur battery performance. Herein, an integrated structure with tandem connection is constructed by confining nanosulfur (NS) in conductive poly(3,4-ethylenedioxythiophene) (PEDOT) reaction chambers, forming an interface of discrete independent nanoreactor units bonded onto carbon nanotubes (noted as CNT/NS@PEDOT). The unique spatial confinement and concentration gradients of sulfur@PEDOT nanoreactors (SP-NRs) can promote reaction kinetics while facilitating rapid polysulfide transformation and minimizing dissolution and diffusion losses. Meanwhile, overall ultrahigh energy input and output are achieved through tandem connection with carbon nanotubes, isolation with PEDOT coating, and synergistic multiplicative effects among SP-NRs. As a result, it delivers a high initial discharge capacity of 1246 mAh g-1 at 0.1 C and 918 mAh g-1 at 1 C, the low capacity decay rate per lap of 0.011% is achieved at a current density of 1 C after 1000 cycles. This research emphasizes the innovative structural design to provide a fresh trajectory for the further advancement of high-performance energy storage devices.

11.
Article in English | MEDLINE | ID: mdl-38782736

ABSTRACT

AIM: This study aimed to establish a comprehensive set of recovery-oriented rehabilitation programs for individuals with schizophrenia, comparing the efficacy of video-based rehabilitation to traditional face-to-face interventions. The primary objective was to assess whether video-based rehabilitation could serve as a viable alternative for individuals with schizophrenia residing in remote areas. METHODS: A randomized controlled study was used to recruit 80 patients with schizophrenia in a stable post-hospitalization stage following discharge. Participants were categorized into three groups: 24 in the control group, 21 in the face-to-face group, and 35 in the remote group. Assessment parameters included psychiatric symptoms, social skills, family function and self-stigma. RESULTS: A total of 68 participants completed the program. The findings indicated significant differences (p < .05) between the control group and intervention group, particularly in the Positive and Negative Syndrome Scale (PANSS) and the Personal and Social Performance Scale (PSP). CONCLUSIONS: The rehabilitation program, tailored for patients in the early phase of the schizophrenia spectrum, demonstrates both effectiveness and feasibility in enhancing clinical symptoms and social functions. Notably, interventions conducted via video proved to be equally effective as those administered face-to-face.

12.
Arch Gynecol Obstet ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782764

ABSTRACT

PURPOSE: The identification and prognosis of the agenesis of the corpus callosum (ACC) for prenatal consultation are complex and currently unclear. This study aims to explore the correlated genetic mutations of prenatal ACC. METHODS: We retrospectively analyzed 114 prenatal cases of ACC. All cases (n = 114) were subjected to chromosomal microarray analysis (CMA), and 66 CMA-negative cases underwent prenatal exome sequencing (pES) for further analysis. RESULTS: CMA was diagnosed positively in 15/114 (13.2%) cases and pES was diagnosed positively in 24/66 (36.4%) CMA-negative cases. The detection rate of genetic causes between complete and partial ACCs was not significantly different (P > 0.05). Between isolated and non-isolated (other anomalies present) ACCs, the diagnostic rate of pES in non-isolated cases was significantly higher (P < 0.001), while CMA results did not differ (P > 0.05). The diagnostic rate of CMA was significantly increased in cases combined with intracranial and extracranial malformations (P = 0.014), while no CMA positivity was detected in cases combined with only intracranial malformations. CONCLUSION: For fetuses with prenatal ACC, further pES analysis should be recommended after negative CMA results. Chromosome abnormalities are less likely to occur when ACC with only intracranial malformations combined.

13.
Sci Rep ; 14(1): 11303, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760386

ABSTRACT

This cross-sectional study aimed to explore the knowledge, attitudes, and practices (KAP) regarding urinary system stones among the general public in Chengdu, China. Conducted between January and June 2023, this research targeted individuals undergoing physical examinations at the Health Management Center of Sichuan Provincial People's Hospital. Structured questionnaires were administered to collect demographic information and assess KAP related to urinary system stones. Following meticulous scrutiny, 1014 valid questionnaires were retained for analysis. The computed scores for knowledge, attitude, and practice were 9.36 ± 4.23 (possible score range 0-17), 37.75 ± 7.20 (possible score range 11-55), and 30.77 ± 4.00 (possible score range 10-50), respectively. These outcomes suggested insufficient knowledge and moderately positive attitudes and practices among the participants. Structural Equation Modeling (SEM) analysis revealed a direct impact of knowledge on attitude (ß = 0.967, P < 0.001), with attitude subsequently exerting a direct influence on practice (ß = 0.167, P < 0.001). This indicated an indirect impact of knowledge on practice. Additionally, there was a direct effect of knowledge on practice (ß = 0.167, P < 0.001). In conclusion, the general populace in Chengdu exhibited insufficient knowledge and moderate attitudes and practices concerning urinary stones. These findings underscore the imperative for targeted educational interventions aimed at enhancing public awareness and fostering positive attitudes and practices toward urinary stone prevention and management.


Subject(s)
Health Knowledge, Attitudes, Practice , Urinary Calculi , Humans , Female , Male , China/epidemiology , Urinary Calculi/epidemiology , Adult , Middle Aged , Cross-Sectional Studies , Surveys and Questionnaires , Aged , Young Adult , Adolescent
14.
Environ Res ; 255: 119173, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763280

ABSTRACT

The rapid development of modern society has led to an increasing severity in the generation of new pollutants and the significant emission of old pollutants, exerting considerable pressure on the ecological environment and posing a serious threat to both biological survival and human health. The skeletal system, as a vital supportive structure and functional unit in organisms, is pivotal in maintaining body shape, safeguarding internal organs, storing minerals, and facilitating blood cell production. Although previous studies have uncovered the toxic effects of pollutants on vertebrate skeletal systems, there is a lack of comprehensive literature reviews in this field. Hence, this paper systematically summarizes the toxic effects and mechanisms of environmental pollutants on the skeletons of vertebrates based on the evolutionary context from fish to mammals. Our findings reveal that current research mainly focuses on fish and mammals, and the identified impact mechanisms mainly involve the regulation of bone signaling pathways, oxidative stress response, endocrine system disorders, and immune system dysfunction. This study aims to provide a comprehensive and systematic understanding of research on skeletal toxicity, while also promoting further research and development in related fields.

15.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732144

ABSTRACT

DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling cellular expansion and expression levels within genes. Although blood DNA methylation has been studied in humans and other species, its prominence in cattle is largely unknown. This study aimed to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) sequences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes (DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 significantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, complementary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory diseases. Although further investigations are needed to confirm their exact implication in the involved immune processes, these genes could potentially be used for a marker-assisted selection of animals resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bovine respiratory immune process.


Subject(s)
DNA Methylation , Genetic Predisposition to Disease , Cattle , Animals , Epigenesis, Genetic , Cattle Diseases/genetics , Bovine Respiratory Disease Complex/genetics
16.
Redox Biol ; 73: 103174, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38701646

ABSTRACT

Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.

18.
Respir Res ; 25(1): 223, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811936

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is a common and serious condition that can be caused by a variety of pathogens. However, much remains unknown about how these pathogens interact with the lower respiratory commensals, and whether any correlation exists between the dysbiosis of the lower respiratory microbiota and disease severity and prognosis. METHODS: We conducted a retrospective cohort study to investigate the composition and dynamics of sputum microbiota in patients diagnosed with CAP. In total, 917 sputum specimens were collected consecutively from 350 CAP inpatients enrolled in six hospitals following admission. The V3-V4 region of the 16 S rRNA gene was then sequenced. RESULTS: The sputum microbiota in 71% of the samples were predominately composed of respiratory commensals. Conversely, 15% of the samples demonstrated dominance by five opportunistic pathogens. Additionally, 5% of the samples exhibited sterility, resembling the composition of negative controls. Compared to non-severe CAP patients, severe cases exhibited a more disrupted sputum microbiota, characterized by the highly dominant presence of potential pathogens, greater deviation from a healthy state, more significant alterations during hospitalization, and sparser bacterial interactions. The sputum microbiota on admission demonstrated a moderate prediction of disease severity (AUC = 0.74). Furthermore, different pathogenic infections were associated with specific microbiota alterations. Acinetobacter and Pseudomonas were more abundant in influenza A infections, with Acinetobacter was also enriched in Klebsiella pneumoniae infections. CONCLUSION: Collectively, our study demonstrated that pneumonia may not consistently correlate with severe dysbiosis of the respiratory microbiota. Instead, the degree of microbiota dysbiosis was correlated with disease severity in CAP patients.


Subject(s)
Community-Acquired Infections , Microbiota , Severity of Illness Index , Sputum , Humans , Community-Acquired Infections/microbiology , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology , Male , Female , Sputum/microbiology , Middle Aged , Aged , Retrospective Studies , Longitudinal Studies , Cohort Studies , Dysbiosis/microbiology , Dysbiosis/diagnosis , Pneumonia/microbiology , Pneumonia/diagnosis , Pneumonia, Bacterial/microbiology , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/epidemiology , Aged, 80 and over , Adult
19.
Cell Commun Signal ; 22(1): 293, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802896

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a severe and fatal disease. Although mesenchymal stem cell (MSC)-based therapy has shown remarkable efficacy in treating ARDS in animal experiments, clinical outcomes have been unsatisfactory, which may be attributed to the influence of the lung microenvironment during MSC administration. Extracellular vesicles (EVs) derived from endothelial cells (EC-EVs) are important components of the lung microenvironment and play a crucial role in ARDS. However, the effect of EC-EVs on MSC therapy is still unclear. In this study, we established lipopolysaccharide (LPS) - induced acute lung injury model to evaluate the impact of EC-EVs on the reparative effects of bone marrow-derived MSC (BM-MSC) transplantation on lung injury and to unravel the underlying mechanisms. METHODS: EVs were isolated from bronchoalveolar lavage fluid of mice with LPS - induced acute lung injury and patients with ARDS using ultracentrifugation. and the changes of EC-EVs were analysed using nanoflow cytometry analysis. In vitro assays were performed to establish the impact of EC-EVs on MSC functions, including cell viability and migration, while in vivo studies were performed to validate the therapeutic effect of EC-EVs on MSCs. RNA-Seq analysis, small interfering RNA (siRNA), and a recombinant lentivirus were used to investigate the underlying mechanisms. RESULTS: Compared with that in non-ARDS patients, the quantity of EC-EVs in the lung microenvironment was significantly greater in patients with ARDS. EVs derived from lipopolysaccharide-stimulated endothelial cells (LPS-EVs) significantly decreased the viability and migration of BM-MSCs. Furthermore, engrafting BM-MSCs pretreated with LPS-EVs promoted the release of inflammatory cytokines and increased pulmonary microvascular permeability, aggravating lung injury. Mechanistically, LPS-EVs reduced the expression level of isocitrate dehydrogenase 2 (IDH2), which catalyses the formation of α-ketoglutarate (α-KG), an intermediate product of the tricarboxylic acid (TCA) cycle, in BM-MSCs. α-KG is a cofactor for ten-eleven translocation (TET) enzymes, which catalyse DNA hydroxymethylation in BM-MSCs. CONCLUSIONS: This study revealed that EC-EVs in the lung microenvironment during ARDS can affect the therapeutic efficacy of BM-MSCs through the IDH2/TET pathway, providing potential strategies for improving the therapeutic efficacy of MSC-based therapy in the clinic.


Subject(s)
Endothelial Cells , Extracellular Vesicles , Isocitrate Dehydrogenase , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Respiratory Distress Syndrome , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Respiratory Distress Syndrome/therapy , Respiratory Distress Syndrome/metabolism , Endothelial Cells/metabolism , Humans , Mice , Mesenchymal Stem Cell Transplantation/methods , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Mice, Inbred C57BL , Male , Lipopolysaccharides/pharmacology , Signal Transduction , Acute Lung Injury/therapy , Acute Lung Injury/metabolism , Cell Movement
20.
J Sci Food Agric ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38817147

ABSTRACT

Grains are the primary source of food for most people worldwide and constitute a major source of carbohydrates. Many novel technologies are being employed to ensure the safety and reliability of grain supply and production. Gas chromatography-ion mobility spectrometry (GC-IMS) can effectively separate and sensitively detect volatile organic compounds. It possesses advantages such as speed, convenience, high sensitivity, no pretreatment, and wide applicability. In recent years, many studies have shown that the application of GC-IMS technology for grain flavor analysis can play a crucial role in grains. This article elucidates the working principle of GC-IMS technology, reviews the application of GC-IMS in grains in the past 5 years. GC-IMS technology is mainly applied in four aspects in grains. In grain classification, it distinguishes varieties, quality, origin, production year, and processing methods based on the trace differences in volatile organic compounds, thereby fulfilling various grain classification requirements such as origin tracing, geographical indication product recognition, variety identification, production year identification, and detection of counterfeit and inferior grain samples. In optimizing the processing technology of grains and their products, it can improve food flavor, reduce undesirable flavors, and identify better processing parameters. In grain storage, it can determine the storage time, detect spoilage phenomena such as mold and discoloration during storage, eliminate pests affecting storage, and predict the vitality of seeds after storage. In aroma evaluation of grains and their processed products, it can assess the impact of new raw materials, new technologies, fermentation processes, and even oral processing on the quality of grain products. This article also summarizes the characteristics of GC-IMS technology, compiles typical grain flavor compounds, and provides prospects for the future application of GC-IMS. © 2024 Society of Chemical Industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...