Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.431
Filter
1.
J Affect Disord ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823591

ABSTRACT

A high-fat diet can modify the composition of gut microbiota, resulting in dysbiosis. Changes in gut microbiota composition can lead to increased permeability of the gut barrier, allowing bacterial products like lipopolysaccharides (LPS) to enter circulation. This process can initiate systemic inflammation and contribute to neuroinflammation. Empagliflozin (EF), an SGLT2 inhibitor-type hypoglycemic drug, has been reported to treat neuroinflammation. However, there is a lack of evidence showing that EF regulates the gut microbiota axis to control neuroinflammation in HFD models. In this study, we explored whether EF could improve neuroinflammation caused by an HFD via regulation of the gut microbiota and the mechanism underlying this phenomenon. Our data revealed that EF alleviates pathological brain injury, reduces the reactive proliferation of astrocytes, and increases the expression of synaptophysin. In addition, the levels of inflammatory factors in hippocampal tissue were significantly decreased after EF intervention. Subsequently, the results of 16S rRNA gene sequencing showed that EF could change the microbial community structure of mice, indicating that the abundance of Lactococcus, Ligilactobacillus and other microbial populations decreased dramatically. Therefore, EF alleviates neuroinflammation by inhibiting gut microbiota-mediated astrocyte activation in the brains of high-fat diet-fed mice. Our study focused on the gut-brain axis, and broader research on neuroinflammation can provide a more holistic understanding of the mechanisms driving neurodegenerative diseases and inform the development of effective strategies to mitigate their impact on brain health. The results provide strong evidence supporting the larger clinical application of EF.

2.
Am J Primatol ; : e23636, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38824636

ABSTRACT

As a central topic in Behavioral Ecology, animal space use involves dynamic responses to social and ecological factors. We collared 22 rhesus macaques (Macaca mulatta) from six groups on Neilingding Island, China, and collected 80,625 hourly fixes over a year. Using this high-resolution location data set, we quantified the macaques' space use at the individual level and tested the ecological constraints model while considering various environmental and human interfering factors. As predicted by the ecological constraints model, macaques in larger groups had longer daily path lengths (DPLs) and larger home ranges. We found an inverted U-shape relationship between mean daily temperatures and DPLs, indicating that macaques traveled farther on mild temperature days, while they decreased DPLs when temperatures were too high or too low. Anthropogenic food subsidies were positively correlated to DPLs, while the effect of rainfall was negative. Macaques decreased their DPLs and core areas when more flowers and less leaves were available, suggesting that macaques shifted their space use patterns to adapt to the seasonal differences in food resources. By applying GPS collars on a large number of individuals living on a small island, we gained valuable insights into within-group exploitation competition in wild rhesus macaques.

3.
Burns Trauma ; 12: tkae006, 2024.
Article in English | MEDLINE | ID: mdl-38716051

ABSTRACT

Septic shock is a severe form of sepsis characterized by high global mortality rates and significant heritability. Clinicians have long been perplexed by the differential expression of genes, which poses challenges for early diagnosis and prompt treatment of septic shock. Genetic polymorphisms play crucial roles in determining susceptibility to, mortality from, and the prognosis of septic shock. Research indicates that pathogenic genes are known to cause septic shock through specific alleles, and protective genes have been shown to confer beneficial effects on affected individuals. Despite the existence of many biomarkers linked to septic shock, their clinical use remains limited. Therefore, further investigation is needed to identify specific biomarkers that can facilitate early prevention, diagnosis and risk stratification. Septic shock is closely associated with multiple signaling pathways, including the toll-like receptor 2/toll-like receptor 4, tumor necrosis factor-α, phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, nuclear factor κB, Janus kinase/signal transducer and activator of transcription, mammalian target of rapamycin, NOD-like receptor thermal protein domain-associated protein 3 and hypoxia-induced-factor-1 pathways. Understanding the regulation of these signaling pathways may lead to the identification of therapeutic targets for the development of novel drugs to treat sepsis or septic shock. In conclusion, identifying differential gene expression during the development of septic shock allows physicians to stratify patients according to risk at an early stage. Furthermore, auxiliary examinations can assist physicians in identifying therapeutic targets within relevant signaling pathways, facilitating early diagnosis and treatment, reducing mortality and improving the prognosis of septic shock patients. Although there has been significant progress in studying the genetic polymorphisms, specific biomarkers and signaling pathways involved in septic shock, the journey toward their clinical application and widespread implementation still lies ahead.

4.
Opt Lett ; 49(10): 2537-2540, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748099

ABSTRACT

In this Letter, we propose and demonstrate a fiber-to-chip edge coupler (EC) on an x-cut thin film lithium niobate (TFLN) for polarization-insensitive (PI) coupling. The EC consists of three width-tapered full-etched waveguides with silica cladding and matches well with a single-mode fiber (SMF). The measured results show that the minimum coupling losses for TE0/TM0 modes remain to be 0.9 dB/1.1 dB per facet, and the polarization dependent loss (PDL) is <0.5 dB over the wavelength range from 1260 to 1340 nm. Moreover, the EC features large misalignment tolerance of ±2 µm in the Z direction and ±1.5 µm in the X direction for both polarizations for a 1 dB penalty. To the best of our knowledge, this is the first realized O-band edge coupler on TFLN with SMF. The proposed device shows promising potential for integration into TFLN polarization diversity devices.

5.
Medicine (Baltimore) ; 103(20): e38097, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758892

ABSTRACT

BACKGROUND: Endometriosis (EMT) is a common disease in reproductive-age woman and Crohn disease (CD) is a chronic inflammatory disorder in gastrointestinal tract. Previous studies reported that patients with EMT had an increased risk of CD. However, the linkage between EMT and CD remains unclear. In this study, we aimed to investigate the potential molecular mechanism of EMT and CD. METHODS: The microarray data of EMT and CD were downloaded from Gene Expression Omnibus. Common genes of EMT and CD were obtained to perform the Gene Ontology and Kyoto Encyclopedia of Gene Genomes enrichments. The protein-protein interaction network was constructed by Cytoscape software and the hub genes were identified by CytoHubba plug-in. Finally we predicted the transcription factors (TFs) of hub genes and constructed a TFs-hub genes regulation network. RESULTS: A total of 50 common genes were identified. Kyoto Encyclopedia of Gene Genomes enrichment showed that the common genes mainly enriched in MAPK pathway, VEGF pathway, Wnt pathway, TGF-beta pathway, and Ras pathway. Fifteen hub genes were collected from the protein-protein interaction network, including FMOD, FRZB, CPE, SST, ISG15, EFEMP1, KDR, ADRA2A, FZD7, AQP1, IGFBP5, NAMPT, PLUA, FGF9, and FHL2. Among them, FGF9, FZD7, IGFBP5, KDR, and NAMPT were both validated in the other 2 datasets. Finally TFs-hub genes regulation network were constructed. CONCLUSION: Our findings firstly revealed the linkage between EMT and CD, including inflammation, angiogenesis, immune regulation, and cell behaviors, which may lead to the risk of CD in EMT. FGF9, FZD7, IGFBP5, KDR, and NAMPT may closely relate to the linkage.


Subject(s)
Computational Biology , Crohn Disease , Endometriosis , Protein Interaction Maps , Humans , Female , Crohn Disease/genetics , Computational Biology/methods , Endometriosis/genetics , Protein Interaction Maps/genetics , Gene Regulatory Networks , Transcription Factors/genetics , Gene Ontology , Gene Expression Profiling
6.
Angew Chem Int Ed Engl ; : e202405905, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771269

ABSTRACT

The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.

7.
Drug Discov Today ; 29(7): 104019, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729235

ABSTRACT

Inhalation drug delivery is superior for local lung disease therapy. However, there are several unique absorption barriers for inhaled drugs to overcome, including limited drug deposition at the target site, mucociliary clearance, pulmonary macrophage phagocytosis, and systemic exposure. Moreover, the respiratory disease state can affect or even destroy the physiology of the lung, thus influencing the in vivo fate of inhaled particles compared with that in healthy lungs. Nevertheless, limited information is available on this effect. Thus, in this review, we present pathological changes of the lung microenvironment under varied respiratory diseases and their influence on the in vivo fate of inhaled particles; such insights could provide a basis for rational inhalation particle design based on specific disease states.

8.
J Am Chem Soc ; 146(20): 14341-14348, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38726476

ABSTRACT

Phosphagermylenylidenes (R-P═Ge), as heavier analogs of isonitriles, whether in their free state or as complexes with a Lewis base, have not been previously identified as isolable entities. In this study, we report the synthesis of a stable monomeric phosphagermylenylidene within the coordination sphere of a Lewis base under ambient conditions. This species was synthesized by Lewis base-induced dedimerization of a cyclic phosphagermylenylidene dimer or via Me3SiCl elimination from a phosphinochlorogermylene framework. The deliberate integration of a bulky, electropositive N-heterocyclic boryl group at the phosphorus site, combined with coordination stabilization by a cyclic (alkyl)(amino)carbene at the low-valent germanium site, effectively mitigated its natural tendency toward oligomerization. Structural analyses and theoretical calculations have demonstrated that this unprecedented species features a P═Ge double bond, characterized by conventional electron-sharing π and σ bonds, complemented by lone pairs at both the phosphorus and germanium atoms. Preliminary reactivity studies show that this base-stabilized phosphagermylenylidene demonstrates facile release of ligands at the Ge atom, coordination to silver through the lone pair on P, and versatile reactivity including both (cyclo)addition and cleavage of the P═Ge double bond.

9.
CNS Neurosci Ther ; 30(5): e14737, 2024 05.
Article in English | MEDLINE | ID: mdl-38702929

ABSTRACT

AIMS: This study aims to investigate the pharmacological effects and the underlying mechanism of cannabidiol (CBD) on methamphetamine (METH)-induced relapse and behavioral sensitization in male mice. METHODS: The conditioned place preference (CPP) test with a biased paradigm and open-field test were used to assess the effects of CBD on METH-induced relapse and behavioral sensitization in male mice. RNA sequencing and bioinformatics analysis was employed to identify differential expressed (DE) circRNAs, miRNAs, and mRNAs in the nucleus accumbens (NAc) of mice, and the interaction among them was predicted using competing endogenous RNAs (ceRNAs) network analysis. RESULTS: Chronic administration of CBD (40 mg/kg) during the METH withdrawal phase alleviated METH (2 mg/kg)-induced CPP reinstatement and behavioral sensitization in mice, as well as mood and cognitive impairments following behavioral sensitization. Furthermore, 42 DEcircRNAs, 11 DEmiRNAs, and 40 DEmRNAs were identified in the NAc of mice. The circMeis2-miR-183-5p-Kcnj5 network in the NAc of mice is involved in the effects of CBD on METH-induced CPP reinstatement and behavioral sensitization. CONCLUSIONS: This study constructed the ceRNAs network for the first time, revealing the potential mechanism of CBD in treating METH-induced CPP reinstatement and behavioral sensitization, thus advancing the application of CBD in METH use disorders.


Subject(s)
Cannabidiol , Methamphetamine , Mice, Inbred C57BL , MicroRNAs , RNA, Circular , RNA, Messenger , Animals , Cannabidiol/pharmacology , Male , Methamphetamine/pharmacology , MicroRNAs/genetics , MicroRNAs/metabolism , Mice , RNA, Circular/genetics , RNA, Messenger/metabolism , Recurrence , Central Nervous System Stimulants/pharmacology , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Gene Regulatory Networks/drug effects
10.
Cell Mol Immunol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806624

ABSTRACT

Psoriasis is a common chronic inflammatory skin disease driven by the aberrant activation of dendritic cells (DCs) and T cells, ultimately leading to increased production of cytokines such as interleukin (IL)-23 and IL-17A. It is established that the cGAS-STING pathway is essential for psoriatic inflammation, however, the specific role of cGAS-STING signaling in DCs within this context remains unclear. In this study, we demonstrated the upregulation of cGAS-STING signaling in psoriatic lesions by analyzing samples from both clinical patients and imiquimod (IMQ)-treated mice. Using a conditional Sting-knockout transgenic mouse model, we elucidated the impact of cGAS-STING signaling in DCs on the activation of IL-17- and IFN-γ-producing T cells in psoriatic inflammation. Ablation of the Sting hampers DC activation leads to decreased numbers of IL-17-producing T cells and Th1 cells, and thus subsequently attenuates psoriatic inflammation in the IMQ-induced mouse model. Furthermore, we explored the therapeutic potential of the STING inhibitor C-176, which reduces psoriatic inflammation and enhances the anti-IL-17A therapeutic response. Our results underscore the critical role of cGAS-STING signaling in DCs in driving psoriatic inflammation and highlight a promising psoriasis treatment.

11.
Chem Soc Rev ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808658

ABSTRACT

Correction for 'Recent advances in the chemistry of isolable carbene analogues with group 13-15 elements' by Mian He et al., Chem. Soc. Rev., 2024, https://doi.org/10.1039/D3CS00784G.

12.
PLoS One ; 19(5): e0304398, 2024.
Article in English | MEDLINE | ID: mdl-38814913

ABSTRACT

OBJECTIVE: Minimally invasive surgery for spontaneous intracerebral hemorrhage is impeded by inadequate lysis of the target blood clot. Ultrasound is thought to expedite intravascular thrombolysis, thereby facilitating vascular recanalization. However, the impact of ultrasound on intracerebral blood clot lysis remains uncertain. This study aimed to explore the feasibility of combining ultrasound with urokinase to enhance blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage. METHODS: The blood clots were divided into four groups: control group, ultrasound group, urokinase group, and ultrasound + urokinase group. Using our experimental setup, which included a key-shaped bone window, we simulated a minimally invasive puncture and drainage procedure for spontaneous intracerebral hemorrhage. The blood clot was then irradiated using ultrasound. Blood clot lysis was assessed by weighing the blood clot before and after the experiment. Potential adverse effects were evaluated by measuring the temperature variation around the blood clot in the ultrasound + urokinase group. RESULTS: A total of 40 blood clots were observed, with 10 in each experimental group. The blood clot lysis rate in the ultrasound group, urokinase group, and ultrasound + urokinase group (24.83 ± 4.67%, 47.85 ± 7.09%, 61.13 ± 4.06%) was significantly higher than that in the control group (16.11 ± 3.42%) (p = 0.02, p < 0.001, p < 0.001). The blood clot lysis rate in the ultrasound + urokinase group (61.13 ± 4.06%) was significantly higher than that in the ultrasound group (24.83 ± 4.67%) (p < 0.001) or urokinase group (47.85 ± 7.09%) (p < 0.001). In the ultrasound + urokinase group, the mean increase in temperature around the blood clot was 0.26 ± 0.15°C, with a maximum increase of 0.38 ± 0.09°C. There was no significant difference in the increase in temperature regarding the main effect of time interval (F = 0.705, p = 0.620), the main effect of distance (F = 0.788, p = 0.563), or the multiplication interaction between time interval and distance (F = 1.100, p = 0.342). CONCLUSIONS: Our study provides evidence supporting the enhancement of blood clot lysis in an in vitro model of spontaneous intracerebral hemorrhage through the combined use of ultrasound and urokinase. Further animal experiments are necessary to validate the experimental methods and results.


Subject(s)
Cerebral Hemorrhage , Urokinase-Type Plasminogen Activator , Urokinase-Type Plasminogen Activator/pharmacology , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/therapy , Ultrasonic Therapy/methods , Humans , Thrombosis , Animals , Thrombolytic Therapy/methods , Fibrinolysis/drug effects , Blood Coagulation/drug effects
13.
Sci Adv ; 10(22): eadk7214, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38809984

ABSTRACT

Fluctuations in the activity of sensory neurons often predict perceptual decisions. This connection can be quantified with a metric called choice probability (CP), and there is a longstanding debate about whether CP reflects a causal influence on decisions or an echo of decision-making activity elsewhere in the brain. Here, we show that CP can reflect a third variable, namely, the movement used to indicate the decision. In a standard visual motion discrimination task, neurons in the middle temporal (MT) area of primate cortex responded more strongly during trials that involved a saccade toward their receptive fields. This variability accounted for much of the CP observed across the neuronal population, and it arose through training. Moreover, pharmacological inactivation of MT biased behavioral responses away from the corresponding visual field locations. These results demonstrate that training on a task with fixed sensorimotor contingencies introduces movement-related activity in sensory brain regions and that this plasticity can shape the neural circuitry of perceptual decision-making.


Subject(s)
Decision Making , Macaca mulatta , Visual Cortex , Animals , Visual Cortex/physiology , Decision Making/physiology , Male , Neurons/physiology , Movement/physiology , Motion Perception/physiology , Saccades/physiology , Photic Stimulation
14.
BMC Health Serv Res ; 24(1): 562, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693514

ABSTRACT

BACKGROUND: This study aimed to examine the reporting quality of existing economic evaluations for negotiated glucose-lowering drugs (GLDs) included in China National Reimbursement Drug List (NRDL) using the Consolidated Health Economic Evaluation Reporting Standards 2013 (CHEERS 2013). METHODS: We performed a systematic literature research through 7 databases to identify published economic evaluations for GLDs included in the China NRDL up to March 2021. Reporting quality of identified studies was assessed by two independent reviewers based on the CHEERS checklist. The Kruskal-Wallis test and Mann-Whitney U test were performed to examine the association between reporting quality and characteristics of the identified studies. RESULTS: We have identified 24 studies, which evaluated six GLDs types. The average score rate of the included studies was 77.41% (SD:13.23%, Range 47.62%-91.67%). Among all the required reporting items, characterizing heterogeneity (score rate = 4.17%) was the least satisfied item. Among six parts of CHEERS, results part scored least at 0.55 (score rate = 54.79%) because of the incompleteness of characterizing uncertainty. Results from the Kruskal-Wallis test and Mann-Whitney U test showed that model choice, journal type, type of economic evaluations, and study perspective were associated with the reporting quality of the studies. CONCLUSIONS: There remains room to improve the reporting quality of economic evaluations for GLDs in NRDL. Checklists such as CHEERS should be widely used to improve the reporting quality of economic researches in China.


Subject(s)
Hypoglycemic Agents , China , Humans , Hypoglycemic Agents/economics , Hypoglycemic Agents/therapeutic use , Cost-Benefit Analysis , Reimbursement Mechanisms/standards , Negotiating
15.
Taiwan J Obstet Gynecol ; 63(3): 336-340, 2024 May.
Article in English | MEDLINE | ID: mdl-38802196

ABSTRACT

OBJECTIVE: To explore the optimal timing of embryo transfer after the first round treatment of chronic endometritis (CE) in vitro. MATERIALS AND METHODS: A total of 184 patients were recruited from a retrospective analysis of a large university-affiliated reproduction center in 2021. Some people chose to undergo embryo transfer in the same menstrual cycle with the first round of antibiotic treatment (Group 1, n = 29). Others received embryo transfer in the next cycle after the first round of treatment (Group 2, n = 69) or even one cycle later (Group 3,n = 96). RESULTS: Patients in Group 1 got significantly lower biochemical pregnancy rate and clinical pregnancy rate and live birth rate than Group 2 (p < 0.05) and also Group 3 (p < 0.05). Then after comparing the influence factors, we found embryo transfer in the next cycle after antibiotic treatment had a higher clinical pregnancy rate than group 1 (OR = 3.2 p < 0.05) and group 3(OR = 2.5, p < 0.05). The live birth rate in group 2 was higher than group 1(OR = 3.5, p < 0.05). CONCLUSION: These findings illustrate that embryo transfer in the next menstrual cycle is the optimal time. Embryo transfer in the same menstrual cycle with the first round of treatment reduces the pregnancy rate.


Subject(s)
Anti-Bacterial Agents , Embryo Transfer , Endometritis , Pregnancy Rate , Humans , Female , Embryo Transfer/methods , Pregnancy , Retrospective Studies , Adult , Endometritis/drug therapy , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Chronic Disease , Time Factors , Fertilization in Vitro/methods , Live Birth , Menstrual Cycle/drug effects
16.
Infect Med (Beijing) ; 3(1): 100095, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38586543

ABSTRACT

The COVID-19 pandemic has created unprecedented challenges worldwide. Artificial intelligence (AI) technologies hold tremendous potential for tackling key aspects of pandemic management and response. In the present review, we discuss the tremendous possibilities of AI technology in addressing the global challenges posed by the COVID-19 pandemic. First, we outline the multiple impacts of the current pandemic on public health, the economy, and society. Next, we focus on the innovative applications of advanced AI technologies in key areas such as COVID-19 prediction, detection, control, and drug discovery for treatment. Specifically, AI-based predictive analytics models can use clinical, epidemiological, and omics data to forecast disease spread and patient outcomes. Additionally, deep neural networks enable rapid diagnosis through medical imaging. Intelligent systems can support risk assessment, decision-making, and social sensing, thereby improving epidemic control and public health policies. Furthermore, high-throughput virtual screening enables AI to accelerate the identification of therapeutic drug candidates and opportunities for drug repurposing. Finally, we discuss future research directions for AI technology in combating COVID-19, emphasizing the importance of interdisciplinary collaboration. Though promising, barriers related to model generalization, data quality, infrastructure readiness, and ethical risks must be addressed to fully translate these innovations into real-world impacts. Multidisciplinary collaboration engaging diverse expertise and stakeholders is imperative for developing robust, responsible, and human-centered AI solutions against COVID-19 and future public health emergencies.

17.
Plant Cell ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581430

ABSTRACT

Lateral branches are important components of shoot architecture and directly affect crop yield and production cost. Although sporadic studies have implicated abscisic acid (ABA) biosynthesis in axillary bud outgrowth, the function of ABA catabolism and its upstream regulators in shoot branching remain elusive. Here, we showed that the MADS-box transcription factor AGAMOUS-LIKE 16 (CsAGL16) is a positive regulator of axillary bud outgrowth in cucumber (Cucumis sativus). Functional disruption of CsAGL16 led to reduced bud outgrowth, whereas overexpression of CsAGL16 resulted in enhanced branching. CsAGL16 directly binds to the promoter of the ABA 8'-hydroxylase gene CsCYP707A4 and promotes its expression. Loss of CsCYP707A4 function inhibited axillary bud outgrowth and increased ABA levels. Elevated expression of CsCYP707A4 or treatment with an ABA biosynthesis inhibitor largely rescued the Csagl16 mutant phenotype. Moreover, cucumber General Regulatory Factor 1 (CsGRF1) interacts with CsAGL16 and antagonizes CsAGL16-mediated CsCYP707A4 activation. Disruption of CsGRF1 resulted in elongated branches and decreased ABA levels in the axillary buds. The Csagl16 Csgrf1 double mutant exhibited a branching phenotype resembling that of the Csagl16 single mutant. Therefore, our data suggest that the CsAGL16-CsGRF1 module regulates axillary bud outgrowth via CsCYP707A4-mediated ABA catabolism in cucumber. Our findings provide a strategy to manipulate ABA levels in axillary buds during crop breeding to produce desirable branching phenotypes.

18.
J Cosmet Dermatol ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38586909

ABSTRACT

OBJECTIVE: This retrospective study aims to compare the efficacy rates in treating hypertrophic scars among four distinct groups of patients who either underwent fractional Erbium: yttrium-aluminum-garnet (Er:YAG) laser or microplasma radiofrequency technology as standalone treatments or in combination with compound betamethasone transdermal administration. METHOD: The study retrospectively examined 208 patients treated at our institution from April 2011 to December 2022 for hypertrophic scars, receiving no less than three treatments (with an interval of 8 weeks between each). The patients were categorized into four groups: the F group (treated with fractional Er:YAG laser), the F + B group (treated with fractional Er:YAG laser combined with compound betamethasone transdermal administration), the P group (treated with microplasma radiofrequency technology), and the P + B group (treated with microplasma radiofrequency technology combined with compound betamethasone transdermal administration). The therapeutic effects were evaluated based on the changes in the Vancouver Scar Scale (VSS) scores before and after treatment in these groups. RESULTS: There was no statistically significant difference in the VSS scores among the four groups before treatment. After undergoing three sessions of the aforementioned four types of treatment, all groups showed a decrease in VSS scores, with average posttreatment VSS scores for the F group scored 5.15 ± 2.084, F + B group scored 3.7 ± 1.781, P group scored 4.41 ± 1.933, and P + B group scored 3.16 ± 1.775, respectively. With an increasing number of treatments, the total effective rate gradually increased in all four groups, and the combination treatment using compound betamethasone transdermal administration proved more effective than the standalone treatment. CONCLUSION: All four treatments yielded favorable outcomes, with the combined therapy involving compound betamethasone transdermal administration proving more effective than the standalone treatments, meriting further clinical attention.

19.
Comput Struct Biotechnol J ; 23: 1534-1546, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38633388

ABSTRACT

Glioblastoma (GBM) is one of the most malignant tumors of the central nervous system. The pattern of immune checkpoint expression in GBM remains largely unknown. We performed snRNA-Seq and spatial transcriptomic (ST) analyses on untreated GBM samples. 8 major cell types were found in both tumor and adjacent normal tissues, with variations in infiltration grade. Neoplastic cells_6 was identified in malignant cells with high expression of invasion and proliferator-related genes, and analyzed its interactions with microglia, MDM cells and T cells. Significant alterations in ligand-receptor interactions were observed, particularly between Neoplastic cells_6 and microglia, and found prominent expression of VISTA/VSIG3, suggesting a potential mechanism for evading immune system attacks. High expression of TIM-3, VISTA, PSGL-1 and VSIG-3 with similar expression patterns in GBM, may have potential as therapeutic targets. The prognostic value of VISTA expression was cross-validated in 180 glioma patients, and it was observed that patients with high VISTA expression had a poorer prognosis. In addition, multimodal cross analysis integrated SnRNA-seq and ST, revealing complex intracellular communication and mapping the GBM tumor microenvironment. This study reveals novel molecular characteristics of GBM, co-expression of immune checkpoints, and potential therapeutic targets, contributing to improving the understanding and treatment of GBM.

20.
Opt Express ; 32(6): 9433-9441, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571178

ABSTRACT

Sharp bends are crucial for large-scale and high-density photonics integration on thin-film lithium niobate platform. In this study, we demonstrate low-loss (<0.05 dB) and sharp bends (Reff = 30 µm) using free-form curves with a 200-nm-thick slab and a rib height of 200 nm on x-cut lithium niobate. Employing the same design method, we successfully realize a compact fully-etched ring resonator with a remarkably large free spectral range of 10.36 nm experimentally. Notably, the equivalent radius of the ring resonator is a mere 15 µm, with a loaded Q factor reaching 2.2 × 104.

SELECTION OF CITATIONS
SEARCH DETAIL
...