Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 26(3): 265-78, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15715921

ABSTRACT

In comparison to cation (K+, Na+, and Ca2+) channels, much less is currently known about the functional role of anion (Cl-) channels in cardiovascular physiology and pathophysiology. Over the past 15 years, various types of Cl- currents have been recorded in cardiac cells from different species including humans. All cardiac Cl- channels described to date may be encoded by five different Cl- channel genes: the PKA- and PKC-activated cystic fibrosis tansmembrane conductance regulator (CFTR), the volume-regulated ClC-2 and ClC-3, and the Ca2+-activated CLCA or Bestrophin. Recent studies using multiple approaches to examine the functional role of Cl- channels in the context of health and disease have demonstrated that Cl- channels might contribute to: 1) arrhythmogenesis in myocardial injury; 2) cardiac ischemic preconditioning; and 3) the adaptive remodeling of the heart during myocardial hypertrophy and heart failure. Therefore, anion channels represent very attractive novel targets for therapeutic approaches to the treatment of heart diseases. Recent evidence suggests that Cl- channels, like cation channels, might function as a multiprotein complex or functional module. In the post-genome era, the emergence of functional proteomics has necessitated a new paradigm shift to the structural and functional assessment of integrated Cl- channel multiprotein complexes in the heart, which could provide new insight into our understanding of the underlying mechanisms responsible for heart disease and protection.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Cardiomegaly/physiopathology , Chloride Channels/physiology , Ischemic Preconditioning , Animals , Arrhythmias, Cardiac/genetics , Cardiomegaly/genetics , Cardiomegaly/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Heart Failure/genetics , Heart Failure/metabolism , Heart Failure/physiopathology , Humans
2.
Circulation ; 110(6): 700-4, 2004 Aug 10.
Article in English | MEDLINE | ID: mdl-15289377

ABSTRACT

BACKGROUND: Recent evidence suggests that chloride channels may be involved in ischemic preconditioning (IPC). In this study, we tested whether the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels, which are expressed in the heart and activated by protein kinase A and protein kinase C, are important for IPC in isolated heart preparations from wild-type (WT) and CFTR knockout (CFTR-/-) mice. METHODS AND RESULTS: Hearts were isolated from age-matched WT or CFTR-/- (B6.129P2-Cftr(tm1Unc) and STOCKCftr(tm1Unc)-TgN 1Jaw) mice and perfused in the Langendorff or working-heart mode. All hearts were allowed to stabilize for 10 minutes before they were subjected to 30 or 45 minutes of global ischemia followed by 40 minutes of reperfusion (control group) or 3 cycles of 5 minutes of ischemia and reperfusion (IPC group) before 30 or 45 minutes of global ischemia and 40 minutes of reperfusion. Hemodynamic indices were recorded to evaluate cardiac functions. Release of creatine phosphate kinase (CPK) in the samples of coronary effluent and infarct size of the ventricles were used to estimate myocardial tissue injury. In WT adult hearts, IPC protected cardiac function during reperfusion and significantly decreased ischemia-induced CPK release and infarct size. A selective CFTR channel blocker, gemfibrozil, abrogated the protective effect of IPC. Furthermore, targeted inactivation of the CFTR gene in 2 different strains of CFTR-/- mice also prevented IPC's protection of cardiac function and myocardial injury against sustained ischemia. CONCLUSIONS: CFTR Cl- channels may serve as novel and crucial mediators in mouse heart IPC.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Myocardial Reperfusion Injury/prevention & control , Animals , Chlorides/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/physiology , Gemfibrozil/pharmacology , Ion Transport/drug effects , Ischemic Preconditioning , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CFTR , Mice, Knockout , Myocardial Ischemia/complications , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/genetics , Oligopeptides/administration & dosage , Oligopeptides/pharmacology , Species Specificity , Ventricular Function, Left
3.
J Physiol ; 557(Pt 2): 439-56, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15020697

ABSTRACT

ClC-3, a member of the large superfamily of ClC voltage-dependent Cl(-) channels, has been proposed as a molecular candidate responsible for volume-sensitive osmolyte and anion channels (VSOACs) in some cells, including heart and vascular smooth muscle. However, the reported presence of native VSOACs in at least two cell types from transgenic ClC-3 disrupted (Clcn3(-/-)) mice casts considerable doubt on this proposed role for ClC-3. We compared several properties of native VSOACs and examined mRNA transcripts and membrane protein expression profiles in cardiac and pulmonary arterial smooth muscle cells from Clcn3(+/+) and Clcn3(-/-) mice to: (1) test the hypothesis that native VSOACs are unaltered in cells from Clcn3(-/-) mice, and (2) test the possibility that targeted inactivation of the Clcn3 gene using a conventional murine global knock-out approach may result in compensatory changes in expression of other membrane proteins. Our experiments demonstrate that VSOAC currents in myocytes from Clcn3(+/+) and Clcn3(-/-) mice are remarkably similar in terms of activation and inactivation kinetics, steady-state current densities, rectification, anion selectivity (I(-) > Cl(-)>> Asp(-)) and sensitivity to block by glibenclamide, niflumic acid, DIDS and extracellular ATP. However, additional experiments revealed several significant differences in other fundamental properties of native VSOACs recorded from atrial and smooth muscle cells from Clcn3(-/-) mice, including: differences in regulation by endogenous protein kinase C, differential sensitivity to block by anti-ClC-3 antibodies, and differential sensitivities to [ATP](i) and free [Mg(2+)](i). These results suggest that in response to Clcn3 gene deletion, there may be compensatory changes in expression of other proteins that alter VSOAC channel subunit composition or associated regulatory subunits that give rise to VSOACs with different properties. Consistent with this hypothesis, in atria from Clcn3(-/-) mice compared to Clcn3(+/+) mice, quantitative analysis of ClC mRNA expression levels revealed significant increases in transcripts for ClC-1, ClC-2, and ClC-3, and protein expression profiles obtained using two-dimensional polyacrylamide gel electrophoresis revealed complex changes in at least 35 different unidentified membrane proteins in cells from Clcn3(-/-) mice. These findings emphasize that caution needs to be exercised in simple attempts to interpret the phenotypic consequences of conventional global Clcn3 gene inactivation.


Subject(s)
Chloride Channels/physiology , Ion Channels/physiology , Membrane Proteins/biosynthesis , Myocytes, Cardiac/metabolism , Myocytes, Smooth Muscle/metabolism , Adenosine Triphosphate/pharmacology , Animals , Antibodies/pharmacology , Brain/metabolism , Chloride Channels/deficiency , Chloride Channels/genetics , Heart Atria/metabolism , Ion Channels/chemistry , Magnesium/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/immunology , Myocytes, Smooth Muscle/chemistry , Myocytes, Smooth Muscle/immunology , Protein Kinase C/pharmacology , Pulmonary Artery/metabolism , RNA, Messenger/analysis , RNA, Messenger/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...