Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Inorg Biochem ; 98(8): 1436-46, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15271522

ABSTRACT

Three new monomeric Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole (Hapt), [Cu(Hapt)(H(2)O)(2)(SO(4))] (1), [Cu(Hapt)(2)(H(2)O)(NO(3))](NO(3)) (2), and [Cu(Hapt)(2)(NCS-N)](NCS).H(2)O (3), have been prepared and characterized by single crystal X-ray diffraction. One distorted [CuN(2)O(2)+O(')] square-pyramidal (1), one distorted [CuN(3)O+N(')+O(')] octahedral (2), and one distorted [CuN(4)+N(')] intermediate between square-pyramidal and trigonal-bipyramidal (3) coordination configuration were found and are suggested to be due to the chelating nature of the ligand, which interacts with Cu(II) through the N4(triazole) and N(pyridine) atoms. Spectral properties of these chelates are in accordance with the X-ray structural data. With ascorbate and H(2)O(2) activation, compound 2 exhibits higher nuclease activity than compound 1. The influence on the DNA cleavage process of different scavengers of reactive oxygen species: dimethyl sulfoxide (DMSO), tert-butyl alcohol, sodium azide, 2,2,6,6-tetramethyl-4-piperidone and superoxide dismutase enzyme (SOD), and of the minor groove binder distamycin, is also studied.


Subject(s)
Copper/chemistry , DNA/metabolism , Deoxyribonucleases , Triazoles/chemistry , Copper/metabolism , Crystallography, X-Ray , Deoxyribonucleases/chemistry , Deoxyribonucleases/metabolism , Free Radical Scavengers/chemistry , Free Radical Scavengers/metabolism , Models, Molecular , Molecular Sequence Data , Molecular Structure , Oxidation-Reduction , Spectrum Analysis , Triazoles/metabolism
2.
Inorg Chem ; 43(6): 2132-40, 2004 Mar 22.
Article in English | MEDLINE | ID: mdl-15018537

ABSTRACT

The preparation, spectroscopic characterization, and magnetic study of three new oxamidate-bridged nickel(II) dinuclear complexes of formulas ([Ni(Me3[12]aneN3)]2(mu-oa))(PF6)2 (1), ([Ni(Me3[12]aneN3)]2(mu-dmoa))(PF6)2 (2), and ([Ni(Me3[12]aneN3)]2(mu-dpoa))(PF6)2 (3) (Me3[12]aneN3 = 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene, oa = oxamidate, dmoa = N,N'-dimethyloxamidate, and dpoa = N,N'-diphenyloxamidate) are reported. The crystal structures of two of them (1 and 3) have been determined. 1 and 3 crystallize in the monoclinic system, space group P2(1)/c, with Z = 2 and a = 7.901(4) A, b = 13.597(6) A, c = 17.565(10) A, and beta = 96.46(4) degrees for 1 and a = 13.854(3) A, b = 17.469(4) A, c = 12.543(3) A, and beta = 116.22(3) degrees for 3. The structures of 1 and 3 consist of dinuclear ([Ni(Me3[12]aneN3)]2(mu-oa))2+ and ([Ni(Me3[12]aneN3)]2(mu-dpoa))2+ cations and hexafluorophosphate anions. Each nickel in 1-3 is five-coordinate, and the substitution of the hydrogen atom of the amidate nitrogen of 1 by a methyl (2) or a phenyl (3) group causes a significant modification of the stereochemistry of the nickel(II) ions from square pyramidal toward trigonal bipyramidal (tau values of 0.12 and 0.48 for 1 and 3, respectively). The NOESY spectrum of 3 has allowed us to achieve the assignment of the phenyl protons of the N,N'-diphenyloxamidate. The value of magnetic coupling between the two nickel(II) ions across the oxamidate bridge [J = -57.0 (oa, 1), -38.0 (dmoa, 2) and -30.5 cm(-1) (dpoa, 3)] is very sensitive to this stereochemical change, and its variation is explained on the basis of orbital considerations. DFT type calculations have been performed to analyze and substantiate the trend of the magnetic coupling in 1-3.

SELECTION OF CITATIONS
SEARCH DETAIL
...