Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Nutrients ; 14(19)2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36235813

ABSTRACT

Research has connected Parkinson's disease (PD) with impaired intestinal barrier. The activation of G-protein-coupled receptor 109A (GPR109A) protects the intestinal barrier by inhibiting the NF-κB signaling pathway. Sodium butyrate (NaB), which is a GPR109A ligand, may have anti-PD effects. The current study's objective is to demonstrate that NaB or monomethyl fumarate (MMF, an agonist of the GPR109A) can treat PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) via repairing the intestinal barrier. Male C57BL/6J mice were divided into four groups randomly: control, MPTP + vehicle, MPTP + NaB, and MPTP + MMF. Modeling mice received MPTP (20 mg/kg/day, i.p.) for a week, while control mice received sterile PBS. Then, four groups each received two weeks of sterile PBS (10 mL/kg/day, i.g.), sterile PBS (10 mL/kg/day, i.g.), NaB (600 mg/kg/day, i.g.), or MMF (100 mg/kg/day, i.g.). We assessed the expression of tight junction (TJ) proteins (occludin and claudin-1), GPR109A, and p65 in the colon, performed microscopic examination via HE staining, quantified markers of intestinal permeability and proinflammatory cytokines in serum, and evaluated motor symptoms and pathological changes in the substantia nigra (SN) or striatum. According to our results, MPTP-induced defected motor function, decreased dopamine and 5-hydroxytryptamine levels in the striatum, decreased tyrosine hydroxylase-positive neurons and increased activated microglia in the SN, and systemic inflammation were ameliorated by NaB or MMF treatment. Additionally, the ruined intestinal barrier was also rebuilt and NF-κB was suppressed after the treatment, with higher levels of TJ proteins, GPR109A, and decreased intestinal permeability. These results show that NaB or MMF can remedy motor symptoms and pathological alterations in PD mice by restoring the intestinal barrier with activated GPR109A. We demonstrate the potential for repairing the compromised intestinal barrier and activating GPR109A as promising treatments for PD.


Subject(s)
Neuroprotective Agents , Parkinson Disease , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine , Animals , Butyric Acid/pharmacology , Claudin-1 , Cytokines , Disease Models, Animal , Dopamine/metabolism , Fumarates , Ligands , Male , Mice , Mice, Inbred C57BL , NF-kappa B , Neuroprotective Agents/pharmacology , Occludin , Receptors, G-Protein-Coupled , Serotonin , Tyrosine 3-Monooxygenase
2.
Zhongguo Zhong Yao Za Zhi ; 46(21): 5693-5700, 2021 Nov.
Article in Chinese | MEDLINE | ID: mdl-34951223

ABSTRACT

To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.


Subject(s)
Acute Lung Injury , Drugs, Chinese Herbal/pharmacology , NF-kappa B , Receptor for Advanced Glycation End Products , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Animals , Lipopolysaccharides , Lung/metabolism , Mice , NF-kappa B/genetics , NF-kappa B/metabolism , Network Pharmacology , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...