Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
Bioconjug Chem ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722674

ABSTRACT

In clinical practice, the treatment of colon cancer is faced with the dilemma of metastasis and recurrence, which is related to immunosuppression and hypoxia. Immune checkpoint blockade (ICB) is a negative regulatory pathway of immunity. Immune checkpoint blockade (ICB) is an important immunotherapy method. However, inadequate immunogenicity reduces the overall response rate of ICB. In this study, a tumor microenvironment-responsive nanomedicine (Cu-FACD@MnO2@FA) was prepared to increase host immune response and increase intracellular oxygen levels. Cu-FACD@MnO2@FA preferentially enriched at the tumor site, combined with the immune checkpoint inhibitor alpha PD-L1, induced sufficient immunogenicity to treat colon cancer. Immunofluorescence detection of tumor cells and tissues showed that the expression of hypoxa-inducing factor 1α was significantly down-regulated after treatment and the expression of immunoactivity-related proteins was significantly changed. In vivo treatment in a bilateral tumor mouse model showed complete ablation of the primary tumor and efficient inhibition of the distal tumor. In this study, for the first time, the oxygenation effects of MnO2-coated Cu-doped carbon dots and chemodynamic therapy and a strategy of combining with immuno-blocking therapy were used for treating colon cancer.

2.
Front Neurosci ; 18: 1356241, 2024.
Article in English | MEDLINE | ID: mdl-38694903

ABSTRACT

Introduction: Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by impairments in motor skills, communication, emotional expression, and social interaction. Accurate diagnosis of ASD remains challenging due to the reliance on subjective behavioral observations and assessment scales, lacking objective diagnostic indicators. Methods: In this study, we introduced a novel approach for diagnosing ASD, leveraging T1-based gray matter and ASL-based cerebral blood flow network metrics. Thirty preschool-aged patients with ASD and twenty-two typically developing (TD) individuals were enrolled. Brain network features, including gray matter and cerebral blood flow metrics, were extracted from both T1-weighted magnetic resonance imaging (MRI) and ASL images. Feature selection was performed using statistical t-tests and Minimum Redundancy Maximum Relevance (mRMR). A machine learning model based on random vector functional link network was constructed for diagnosis. Results: The proposed approach demonstrated a classification accuracy of 84.91% in distinguishing ASD from TD. Key discriminating network features were identified in the inferior frontal gyrus and superior occipital gyrus, regions critical for social and executive functions in ASD patients. Discussion: Our study presents an objective and effective approach to the clinical diagnosis of ASD, overcoming the limitations of subjective behavioral observations. The identified brain network features provide insights into the neurobiological mechanisms underlying ASD, potentially leading to more targeted interventions.

4.
Sci Rep ; 14(1): 11329, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760372

ABSTRACT

Active soil organic carbon (SOC) fractions are major driving factors of soil fertility. Understanding the effects of water and fertilizer management on changes in active SOC fractions helps improve soil quality and maintain high agricultural productivity. We conducted a 3-year field experiment in Northeast China. In this experiment, natural soil (CKT) was used as a blank, and two irrigation regimes were established: conventional flooded irrigation (FI) and controlled irrigation (CI). Four nitrogen application levels were set for both irrigation regimes under deep placement of basal fertilizer N: Nd0 (0 kg ha-1), Nd (110 kg ha-1), Nd1 (99 kg ha-1), and Nd2 (88 kg ha-1). After 3 years, at similar N fertilizer application rate, the rice yield, total organic carbon (TOC), and active SOC fraction content of CI were higher under CI than FI. The growth rate of rice yield was 3.8% - 8.63% under CI than FI. Under CI, the rice yield, active SOC fractions contents and carbon pool management index (CPMI) did not decrease with decreasing N application rate but instead reached the highest level in the CNd1 treatment. Overall, CI with Nd1 treatment appears to be the best practice for improving soil fertility and crop productivity in Northeast China.

5.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38608702

ABSTRACT

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Subject(s)
Cachexia , Cytokine TWEAK , Macrophages , Pancreatic Neoplasms , Cachexia/metabolism , Cachexia/etiology , Cachexia/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/complications , Cytokine TWEAK/metabolism , Animals , Humans , Macrophages/metabolism , Mice , NF-kappa B/metabolism , Cell Line, Tumor , Tumor Microenvironment , Muscular Atrophy/metabolism , Muscular Atrophy/etiology , Muscular Atrophy/pathology , Chemokine CCL5/metabolism , Signal Transduction , TNF Receptor-Associated Factor 6/metabolism , Tumor Necrosis Factors/metabolism , Receptors, CCR2/metabolism , Chemokine CCL2/metabolism , Mice, Inbred C57BL
6.
Environ Pollut ; 350: 124002, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636834

ABSTRACT

Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.


Subject(s)
Environmental Pollutants , Food Contamination , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , China , Animals , Humans , Food Contamination/analysis , Food Contamination/statistics & numerical data , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Polychlorinated Dibenzodioxins/analysis , Risk Assessment , Dietary Exposure/statistics & numerical data , Adult , Child , Environmental Monitoring , Eggs/analysis
7.
Comput Biol Med ; 175: 108519, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688128

ABSTRACT

Lung cancer has seriously threatened human health due to its high lethality and morbidity. Lung adenocarcinoma, in particular, is one of the most common subtypes of lung cancer. Pathological diagnosis is regarded as the gold standard for cancer diagnosis. However, the traditional manual screening of lung cancer pathology images is time consuming and error prone. Computer-aided diagnostic systems have emerged to solve this problem. Current research methods are unable to fully exploit the beneficial features inherent within patches, and they are characterized by high model complexity and significant computational effort. In this study, a deep learning framework called Multi-Scale Network (MSNet) is proposed for the automatic detection of lung adenocarcinoma pathology images. MSNet is designed to efficiently harness the valuable features within data patches, while simultaneously reducing model complexity, computational demands, and storage space requirements. The MSNet framework employs a dual data stream input method. In this input method, MSNet combines Swin Transformer and MLP-Mixer models to address global information between patches and the local information within each patch. Subsequently, MSNet uses the Multilayer Perceptron (MLP) module to fuse local and global features and perform classification to output the final detection results. In addition, a dataset of lung adenocarcinoma pathology images containing three categories is created for training and testing the MSNet framework. Experimental results show that the diagnostic accuracy of MSNet for lung adenocarcinoma pathology images is 96.55 %. In summary, MSNet has high classification performance and shows effectiveness and potential in the classification of lung adenocarcinoma pathology images.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neural Networks, Computer , Humans , Adenocarcinoma of Lung/diagnostic imaging , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/classification , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/classification , Deep Learning , Image Interpretation, Computer-Assisted/methods , Diagnosis, Computer-Assisted/methods
8.
Article in English | MEDLINE | ID: mdl-38607719

ABSTRACT

By generating massive gene transcriptome data and analyzing transcriptomic variations at the cell level, single-cell RNA-sequencing (scRNA-seq) technology has provided new way to explore cellular heterogeneity and functionality. Clustering scRNA-seq data could discover the hidden diversity and complexity of cell populations, which can aid to the identification of the disease mechanisms and biomarkers. In this paper, a novel method (DSINMF) is presented for single cell RNA sequencing data by using deep matrix factorization. Our proposed method comprises four steps: first, the feature selection is utilized to remove irrelevant features. Then, the dropout imputation is used to handle missing value problem. Further, the dimension reduction is employed to preserve data characteristics and reduce noise effects. Finally, the deep matrix factorization with bi-stochastic graph regularization is used to obtain cluster results from scRNA-seq data. We compare DSINMF with other state-of-the-art algorithms on nine datasets and the results show our method outperformances than other methods.

9.
ACS Appl Mater Interfaces ; 16(15): 18534-18550, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38574189

ABSTRACT

The metastasis and recurrence of cancer are related to immunosuppression and hypoxia in the tumor microenvironment. Activating immune activity and improving the hypoxic environment face essential challenges. This paper reports on a multifunctional nanomaterial, HSCCMBC, that induces immunogenic cell death through powerful photodynamic therapy/chemodynamic therapy synergistic antitumor effects. The tumor microenvironment changed from the immunosuppressive type to immune type, activated the immune activity of the system, decomposed hydrogen peroxide to generate oxygen based on Fenton-like reaction, and effectively increased the level of intracellular O2 with the assistance of 3-bromopyruvate, a cell respiratory inhibitor. The structure and composition of HSCCMBC were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, infrared spectroscopy, etc. Oxygen probe RDPP was used to investigate the oxygen level inside and outside the cell, and hydroxyl radical probe tetramethylbenzidine was used to investigate the Fenton-like reaction ability. The immunofluorescence method investigated the expression of various immune markers and hypoxia-inducing factors in vitro and in vivo after treatment. In vitro and in vivo experiments indicate that HSCCMBC is an excellent antitumor agent and is expected to be a candidate drug for antitumor immunotherapy.


Subject(s)
Nanoparticles , Neoplasms , Humans , Silicon Dioxide/pharmacology , Copper/chemistry , Carbon/pharmacology , Immunogenic Cell Death , Neoplasms/drug therapy , Oxygen/chemistry , Hypoxia , Cell Line, Tumor , Hydrogen Peroxide/chemistry , Tumor Microenvironment , Nanoparticles/chemistry
10.
Sensors (Basel) ; 24(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38475142

ABSTRACT

To ensure stable and normal transformer operation, light gas protection of the transformer Buchholz relay is essential. However, false alarms related to light gas protection are common, and troubleshooting them often requires on-site gas sampling by personnel. During this time, the transformer's operating state may rapidly deteriorate, posing a safety threat to field staff. To tackle these challenges, this work presents the near-field, thin-sliced transformer monitoring system that uses Electromagnetic Energy Transmission and Wireless Sensing Device (ETWSD). The system leverages external wireless energy input to power gas monitoring sensors. Simultaneously, it employs Near-Field Communication to obtain real-time concentrations of light gases, along with the electrified state and temperature. In field testing conducted on transformer relays' gas collection chambers, the ETWSD effortlessly monitors parameters within warning ranges, encompassing methane gas concentrations around 1000 ppm, leakage voltage ranging from 0-100 V, and relay working temperatures up to 90 °C. Additionally, to facilitate real-time diagnosis for electrical workers, we have developed an Android-based APP software that displays current light gas concentrations, leakage voltage collection values, and temperature, while also enabling threshold judgment, alarms, and data storage. The developed ETWSD is expected to aid on-site personnel in promptly and accurately evaluating transformer light gas protection error alarm faults. It provides a method for simultaneous, contactless, and rapid monitoring of multiple indicators.

11.
J Biochem Mol Toxicol ; 38(4): e23684, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38533528

ABSTRACT

Lung cancer is the leading cause of cancer-related deaths worldwide. Circular RNA (circRNA) circ_0088036 is a recently discovered circRNA known for its roles in rheumatoid arthritis. The study aimed to study the function of circ_0088036 in lung adenocarcinoma (LUAD). Circ_0088036 expressions were analyzed in the Gene Expression Omnibus (GEO) database. The relationship between circ_0088036 expressions and clinicopathological data of LUAD was assessed. The messenger RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot. Cell viability, apoptosis, and invasion were tested by Cell Counting Kit-8, flow cytometry, and transwell assay. The direct interaction between microRNA-203 (miR-203) and circ_0088036 or specificity protein 1 (SP1) was confirmed by dual-luciferase reporter assay, RNA pull-down, and RNA immunoprecipitation assays. Circ_0088036 was overexpressed in LUAD from the analysis of the GEO database. The poor prognosis was found in the patients with high expressions of circ_0088036. The level of Circ_0088036 was increased in LUAD tissues and cells. In terms of function, the deletion of circ_0088036 inhibited LUAD tumorigenesis in vitro by repressing cell growth, invasion, and epithelial-mesenchymal transition (EMT). In mechanism, circ_0088036 could competitively sponge miR-203, thereby affecting the expressions of the target gene SP1. In addition, lessening of miR-203 and enlarging of SP1 could eliminate the anticancer effect of short hairpin RNA-circ_0088036 on LUAD cells. Besides, the knockout of circ_0088036 hindered the growth of xenografted tumors in vivo. Circ_0088036 promoted the LUAD cell growth, invasion, and EMT via modulating the miR-203/SP1 axis in LUAD.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , MicroRNAs , Humans , Cell Line, Tumor , Cell Proliferation , RNA, Circular
12.
ACS Appl Mater Interfaces ; 16(13): 16653-16668, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38520338

ABSTRACT

Cancer metastasis and recurrence are closely associated with immunosuppression and a hypoxic tumor microenvironment. Chemodynamic therapy (CDT) and photothermodynamic therapy (PTT) have been shown to induce immunogenic cell death (ICD), effectively inhibiting cancer metastasis and recurrence when combined with immune adjuvants. However, the limited efficacy of Fenton's reaction and suboptimal photothermal effect present significant challenges for successfully inducing ICD through CDT and PTT. This paper described the synthesis and immunoantitumor activity of the novel iron-copper-doped folic acid carbon dots (CFCFB). Copper-doped folic acid carbon dots (Cu-FACDs) were initially synthesized via a hydrothermal method, using folic acid and copper gluconate as precursors. Subsequently, the nanoparticles CFCFB were obtained through cross-linking and self-assembly of Cu-FACDs with ferrocene dicarboxylic acid (FeDA) and 3-bromopyruvic acid (3BP). The catalytic effect of carbon dots in CFCFB enhanced the activity of the Fenton reaction, thereby promoting CDT-induced ICD and increasing the intracellular oxygen concentration. Additionally, 3BP inhibited cellular respiration, further amplifying the oxygen concentration. The photothermal conversion efficiency of CFCFB reached 55.8%, which significantly enhanced its antitumor efficacy through photothermal therapy. Immunofluorescence assay revealed that treatment with CFCFB led to an increased expression of ICD markers, including calreticulin (CRT) and ATP, as well as extracellular release of HMGB-1, indicating the induction of ICD by CFCFB. Moreover, the observed downregulation of ARG1 expression indicates a transition in the tumor microenvironment from an immunosuppressive state to an antitumor state following treatment with CFCFB. The upregulation of IL-2 and CD8 expression facilitated the differentiation of effector T cells, resulting in an augmented population of CD8+ T cells, thereby indicating the activation of systemic immune response.


Subject(s)
Nanoparticles , Neoplasms , Humans , Copper/pharmacology , CD8-Positive T-Lymphocytes , Iron/pharmacology , Carbon/pharmacology , Folic Acid/pharmacology , Neoplasms/drug therapy , Oxygen/pharmacology , Cell Line, Tumor , Tumor Microenvironment , Hydrogen Peroxide
13.
Cancer Lett ; 588: 216769, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38438098

ABSTRACT

Cancer-associated fibroblasts (CAFs) play an important role in a variety of cancers. However, the role of tumor stroma in nonfunctional pancreatic neuroendocrine tumors (NF-PanNETs) is often neglected. Profiling the heterogeneity of CAFs can reveal the causes of malignant phenotypes in NF-PanNETs. Here, we found that patients with high stromal proportion had poor prognosis, especially for that with infiltrating stroma (stroma and tumor cells that presented an infiltrative growth pattern and no regular boundary). In addition, myofibroblastic CAFs (myCAFs), characterized by FAP+ and α-SMAhigh, were spatially closer to tumor cells and promoted the EMT and tumor growth. Intriguingly, only tumor cells which were spatially closer to myCAFs underwent EMT. We further elucidated that myCAFs stimulate TGF-ß expression in nearby tumor cells. Then, TGF-ß promoted the EMT in adjacent tumor cells and promoted the expression of myCAFs marker genes in tumor cells, resulting in distant metastasis. Our results indicate that myCAFs cause spatial heterogeneity of EMT, which accounts for liver metastasis of NF-PanNETs. The findings of this study might provide possible targets for the prevention of liver metastasis.


Subject(s)
Cancer-Associated Fibroblasts , Liver Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Neuroendocrine Tumors/pathology , Cancer-Associated Fibroblasts/metabolism , Pancreatic Neoplasms/pathology , Phenotype , Transforming Growth Factor beta/metabolism , Liver Neoplasms/pathology , Tumor Microenvironment
14.
ACS Appl Mater Interfaces ; 16(13): 16505-16514, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38527233

ABSTRACT

The micro thermoelectric device (m-TED) boasts features such as adjustable volume, straightforward structure, and precise, rapid temperature control, positioning it as the only current solution for managing the temperature of microelectronic systems. It is extensively utilized in 5G optical modules, laser lidars, and infrared detection. Nevertheless, as the size of the m-TED diminishes, the growing proportion of interface damages the device's operational reliability, constraining the advancement of the m-TED. In this study, we used commercially available bismuth telluride materials to construct the m-TED. The device's reliability was tested under various temperatures: -40, 85, 125, and 150 °C. By deconstructing and analyzing the devices that failed during the tests, we discovered that the primary cause of device failure was the degradation of the solder layer. Moreover, we demonstrated that encapsulating the device with polydimethylsiloxane (PDMS) could effectively delay the deterioration of its performance. This study sparks new insights into the service reliability of m-TEDs and paves the way for further optimizing device interface design and enhancing the device manufacturing process.

15.
Nat Chem ; 16(5): 700-708, 2024 May.
Article in English | MEDLINE | ID: mdl-38396160

ABSTRACT

Chlorinated compounds are ubiquitous. However, accumulation of chlorine-containing waste has a negative impact on human health and the environment due to the inapplicability of common disposal methods, such as landfill and incineration. Here we report a sustainable approach to valorize chlorine-containing hydrocarbon waste, including solids (chlorinated polymers) and liquids (chlorinated solvents), based on copper and palladium catalysts with a NaNO3 promoter. In the process, waste is oxidized to release the chlorine in the presence of N-directing arenes to afford valuable aryl chlorides, such as the FDA-approved drug vismodegib. The remaining hydrocarbon component is mineralized to afford CO, CO2 and H2O. Moreover, the CO and CO2 generated could be further utilized directly. Thus, chlorine-containing hydrocarbon waste, including mixed waste, can serve as chlorination reagents that neither generate hazardous by-products nor involve specialty chlorination reagents. This tandem catalytic approach represents a promising method for the viable management of a wide and diverse range of chlorine-containing hydrocarbon wastes.

16.
Phys Chem Chem Phys ; 26(3): 2341-2354, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38165967

ABSTRACT

Polarization, as an important characterization of the symmetry breaking systems, has attracted tremendous attention in two-dimensional (2D) materials. Due to their significant symmetry breaking, Janus 2D ferrovalley materials provide a desirable platform to investigate the charge, spin, and valley polarization, as well as their coupling effects. Herein, using first-principles calculations, the polarization properties of charge, spin, and valley in Janus VSiGeZ4 (Z = N, P, and As) monolayers are systematically studied. The mirror symmetry breaking leads to a non-zero dipole moment and surface work function difference, indicating the presence of out-of-plane charge polarization. Magnetic properties calculations demonstrate that VSiGeN4 is a 2D-XY magnet with a Berezinskii-Kosterlitz-Thouless temperature of 342 K, while VSiGeP4 and VSiGeAs4 have an out-of-plane magnetization with a Curie temperature below room temperature. The magnetization can be rotated by applying biaxial strain, allowing manipulation of the spin polarization via nonmagnetic means. The spontaneous valley polarization is predicted to be 46, 49, and 70 meV for VSiGeN4, VSiGeP4, and VSiGeAs4, respectively, whose physical origin can be elucidated by employing the model analysis. In particular, the biaxial strain can induce the valley polarization switching from the valence (conduction) band to conduction (valence) band, but it hardly changes the valley polarization strength. Meanwhile, the valley extremum is transformed from the K' (K) to K (K') points. The present work not only provides an underlying insight into the polarization properties of Janus VSiGeZ4 but also offers a class of promising materials for spintronic and valleytronic devices.

17.
Fish Shellfish Immunol ; 146: 109376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218421

ABSTRACT

The limited tolerance of crustacean tissue physiology to a high-fat diet has captured the attention of researchers. Yet, investigations into the physiological response mechanisms of the crustacean intestinal barrier system to a high-fat diet are progressing slowly. Elucidating potential physiological mechanisms and determining the precise regulatory targets would be of great physiological and nutritional significance. This study established a high-fat diet-induced intestinal barrier damage model in Macrobrachium rosenbergii, and systematically investigated the functions of gut microbiota and its functional metabolites. The study achieved this by monitoring phenotypic indicators, conducting 16S rDNA sequencing, targeted metabolomics, and in vitro anaerobic fermentation of intestinal contents. Feeding prawns with control and high-fat diets for 8 weeks, the lipid level of 7 % in the CON diet and 12 % in the HF diet. Results showed that high-fat intake impaired the intestinal epithelial cells, intestinal barrier structure, and permeability of M. rosenbergii, activated the tight junction signaling pathway inhibiting factor NF-κB transcription factor Relish/myosin light chain kinase (MLCK), and suppressed the expression of downstream tight junction proteins zona occludens protein 1 (ZO-1) and Claudin. High-fat intake resulted in a significant increase in abundance of Aeromonas, Enterobacter, and Clostridium sensu stricto 3 genera, while Lactobacillus, Lactococcus, Bacteroides, and Ruminococcaceae UCG-010 genera were significantly decreased. Targeted metabolomics results of bile acids and short-chain fatty acids in intestinal contents and in vitro anaerobic fermentation products showed a marked rise in the abundance of DCA, 12-KetoLCA, 7,12-diketoLCA, and Isovaleric acid, and a significant reduction in the abundance of HDCA, CDCA, and Acetate in the HF group. Pearson correlation analysis revealed a substantial correlation between various genera (Clostridium sensu stricto 3, Lactobacillus, Bacteroides) and secondary metabolites (DCA, HDCA, 12-KetoLCA, Acetate), and the latter was significantly correlated with intestinal barrier function related genes (Relish, ZO-1, MLCK, vitamin D receptor, and ecdysone receptor). These findings indicate that gut microorganisms and their specific bile acids and short-chain fatty acid secondary metabolites play a crucial role in the process of high-fat-induced intestinal barrier damage of M. rosenbergii. Moreover, identifying and targeting these factors could facilitate precise regulation of high-fat nutrition for crustaceans.


Subject(s)
Gastrointestinal Microbiome , Palaemonidae , Animals , Diet, High-Fat/adverse effects , Bile Acids and Salts , Fatty Acids, Volatile , Acetates
18.
Biostatistics ; 25(2): 468-485, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-36610078

ABSTRACT

Transcriptome-wide association studies (TWAS) have been increasingly applied to identify (putative) causal genes for complex traits and diseases. TWAS can be regarded as a two-sample two-stage least squares method for instrumental variable (IV) regression for causal inference. The standard TWAS (called TWAS-L) only considers a linear relationship between a gene's expression and a trait in stage 2, which may lose statistical power when not true. Recently, an extension of TWAS (called TWAS-LQ) considers both the linear and quadratic effects of a gene on a trait, which however is not flexible enough due to its parametric nature and may be low powered for nonquadratic nonlinear effects. On the other hand, a deep learning (DL) approach, called DeepIV, has been proposed to nonparametrically model a nonlinear effect in IV regression. However, it is both slow and unstable due to the ill-posed inverse problem of solving an integral equation with Monte Carlo approximations. Furthermore, in the original DeepIV approach, statistical inference, that is, hypothesis testing, was not studied. Here, we propose a novel DL approach, called DeLIVR, to overcome the major drawbacks of DeepIV, by estimating a related but different target function and including a hypothesis testing framework. We show through simulations that DeLIVR was both faster and more stable than DeepIV. We applied both parametric and DL approaches to the GTEx and UK Biobank data, showcasing that DeLIVR detected additional 8 and 7 genes nonlinearly associated with high-density lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol, respectively, all of which would be missed by TWAS-L, TWAS-LQ, and DeepIV; these genes include BUD13 associated with HDL, SLC44A2 and GMIP with LDL, all supported by previous studies.


Subject(s)
Deep Learning , Transcriptome , Humans , Quantitative Trait Loci , Phenotype , Genome-Wide Association Study/methods , Cholesterol , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide
19.
Orthop Surg ; 16(2): 462-470, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38086608

ABSTRACT

OBJECTIVE: Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS: Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS: A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION: This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.


Subject(s)
Bone Neoplasms , Drugs, Chinese Herbal , Ginsenosides , Osteosarcoma , Humans , Molecular Docking Simulation , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Network Pharmacology , Phosphatidylinositol 3-Kinases , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapy
20.
Br J Nutr ; 131(6): 974-986, 2024 03 28.
Article in English | MEDLINE | ID: mdl-37886873

ABSTRACT

To alleviate the growth inhibition, and intestinal damage of Chinese mitten crab (Eriocheir sinensis) induced by low fishmeal diets (LF), an 8-week feeding trial was conducted to evaluate the addition of dietary soybean-derived bioactive peptides (SBP) in LF diets on the regulation of growth, digestion and intestinal health. The crabs were fed isonitrogenous and isoenergetic conventional diet and LF diets (10 % fishmeal replaced by soybean meal, LF) supplemented with 0, 1 %, 2 %, 4 % and 6 % SBP, respectively. The results showed that LF diet inhibited growth while inclusion of SBP quadratically remitted the growth inhibition induced by LF. For digestive function, increasing addition level of SBP quadratically improved the α-amylase and trypsin activities. For antioxidant function, LF group significantly increased the malondialdehyde content, while SBP linearly decreased the malondialdehyde level and cubically increased the anti-superoxide anion activity and total antioxidant capacity level. For intestinal health, the peritrophic membrane (PM) almost completely separated from the inner wall of the intestinal lumen, the epithelial cells reduced, the muscularis became thinner and the apoptotic signals increased in LF group; with SBP addition, the intestinal morphology was improved, with the PM adhering to the inner wall of the intestinal lumen, an increase in the number of epithelial cells and an increase in the thickness of the muscularis. Additionally, there was a decrease in apoptotic signals. Dietary SBP also increased the expression of PT and Crustin1 quadratically and decreased the expression of ALF1 linearly, ALF3 and ILF2 quadratically.


Subject(s)
Antioxidants , Glycine max , Antioxidants/metabolism , Immunity, Innate , Diet/veterinary , Peptides/pharmacology , Malondialdehyde , Animal Feed/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...