Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 174
Filter
1.
Front Public Health ; 12: 1369675, 2024.
Article in English | MEDLINE | ID: mdl-38827614

ABSTRACT

Background: Coronary heart disease (CHD) is the leading cause of death in both developed and many developing countries. Exercise training is a fundamental component of cardiac rehabilitation programs for patients with CHD. This study aims to investigate the effects of a Tai Chi rehabilitation program, which is provided through a hybrid online and offline mode, on oxidative stress and inflammatory responses in patients with CHD. Methods: A total of 34 patients with coronary heart disease were randomly assigned to two groups: an experiment group (n = 14, age 62.07 ± 9.076 years) and a control group (n = 20, age 61.90 ± 9.700 years). The experiment group underwent a 12-week Tai Chi cardiac rehabilitation program (TCCRP), while the control group followed a conventional exercise rehabilitation program (CERP) consisting of 1-h sessions, 3 times per week, for a total of 36 sessions. Participants were studied at baseline and post-intervention. The main assessments include the levels of Malondialdehyde (MDA), Superoxide dismutase (SOD), Tumor necrosis factor (TNF-α) and Interleukin-10 (IL - 10) in blood samples. Pearson correlation analysis was used, and the differences between the two groups were subsequently tested using two-way repeated ANOVA. Statistical significance was defined as a two-sided p-value of <0.05. Results: The key finding of the study reveals that MDA was significantly reduced by 1.027 nmoL/mL. Additionally, the TCCRP showed significant improvements in SOD and IL-10, with values of 10.110 U/mL and 2.441 pg./mL, respectively. Notably, a significant positive correlation was found between SOD and IL-10 (r = 0.689, p = 0.006), while MDA showed a significant positive correlation with TNF-a (r = 0.542, p = 0.045). In contrast, the ECRP group only showed a significant improvement in SOD. Conclusion: The study conducted a 12-week program on TCCRP, which utilized a hybrid online and offline model for individuals with coronary heart disease. The program showed promising results in alleviating oxidative stress and inflammation, possibly by regulating the balance between oxidative and antioxidative factors, as well as pro-inflammatory and anti-inflammatory factors.


Subject(s)
Coronary Disease , Inflammation , Interleukin-10 , Malondialdehyde , Oxidative Stress , Tai Ji , Humans , Male , Middle Aged , Coronary Disease/rehabilitation , Female , Interleukin-10/blood , Malondialdehyde/blood , Tumor Necrosis Factor-alpha/blood , Aged , Superoxide Dismutase/blood
2.
Sci Rep ; 14(1): 10692, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38724609

ABSTRACT

Glioblastoma multiforme (GBM), the most aggressive form of primary brain tumor, poses a considerable challenge in neuro-oncology. Despite advancements in therapeutic approaches, the prognosis for GBM patients remains bleak, primarily attributed to its inherent resistance to conventional treatments and a high recurrence rate. The primary goal of this study was to acquire molecular insights into GBM by constructing a gene co-expression network, aiming to identify and predict key genes and signaling pathways associated with this challenging condition. To investigate differentially expressed genes between various grades of Glioblastoma (GBM), we employed Weighted Gene Co-expression Network Analysis (WGCNA) methodology. Through this approach, we were able to identify modules with specific expression patterns in GBM. Next, genes from these modules were performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using ClusterProfiler package. Our findings revealed a negative correlation between biological processes associated with neuronal development and functioning and GBM. Conversely, the processes related to the cell cycle, glomerular development, and ECM-receptor interaction exhibited a positive correlation with GBM. Subsequently, hub genes, including SYP, TYROBP, and ANXA5, were identified. This study offers a comprehensive overview of the existing research landscape on GBM, underscoring the challenges encountered by clinicians and researchers in devising effective therapeutic strategies.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Glioblastoma , Humans , Glioblastoma/genetics , Glioblastoma/pathology , Glioblastoma/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Gene Ontology , Computational Biology/methods
3.
Quant Imaging Med Surg ; 14(5): 3489-3500, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38720866

ABSTRACT

Background: Hypoxia is the bottleneck that affects the response of conventional photon radiotherapy, but it does not seem to have much effect on carbon ion radiotherapy (CIRT). This study aimed to evaluate the changes of hypoxia before and after CIRT in patients with non-small cell lung cancer (NSCLC) and whether 18F-fluoromisonidazole (18F-FMISO) positron emission tomography/computed tomography (PET/CT) imaging could predict the response to CIRT in NSCLC patients. Methods: A total of 29 patients with NSCLC who received CIRT were retrospectively included. 18F-FMISO PET/CT imaging was performed before and after treatment, and chest CT was performed after radiotherapy. Radiation response within 1 week after radiotherapy and at the initial follow-up were defined as the immediate response (IR) and early response (ER), respectively. The tumor-to-muscle ratio (TMR), hypoxia volume (HV), and the ΔTMR and ΔHV values of 18F-FMISO uptake were collected. Fisher's exact test, Mann-Whitney U test, Wilcoxon signed-rank test, and binary logistic regression were used to analyze data. Results: (I) Baseline TMR could predict the IR to CIRT with a baseline TMR cut-off value of 2.35, an area under the curve (AUC) of 0.85 [95% confidence interval (CI): 0.62-1.00], a sensitivity of 80.0%, a specificity of 87.5%, and an accuracy of 85.7%. Taking the baseline TMR =2.35 as the cut-off value of high-hypoxia and low-hypoxia group, the IR rate of the high-hypoxia group [66.7% (4/6)] and the low-hypoxia group [6.7% (1/15)] was statistically different (P=0.01). (II) ΔTMR could predict early treatment response after CIRT at initial follow-up, with a cut-off value of ΔTMR =36.6%, AUC of 0.80 (95% CI: 0.61-1.00), sensitivity of 72.7%, specificity of 90.0% and accuracy of 71.4%. Conclusions: A higher degree of tumor hypoxia may be associated with a better IR to CIRT. ΔTMR could predict early treatment response after CIRT.

4.
Rice (N Y) ; 17(1): 36, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780864

ABSTRACT

BACKGROUND: Yield and quality are the two most important traits in crop breeding. Exploring the regulatory mechanisms that affect both yield and quality traits is of great significance for understanding the molecular genetic networks controlling these key crop attributes. Expansins are cell wall loosening proteins that play important roles in regulating rice grain size. RESULTS: We investigated the effect of OsEXPA7, encoding an expansin, on rice grain size and quality. OsEXPA7 overexpression resulted in increased plant height, panicle length, grain length, and thousand-grain weight in rice. OsEXPA7 overexpression also affected gel consistency and amylose content in rice grains, thus affecting rice quality. Subcellular localization and tissue expression analyses showed that OsEXPA7 is localized on the cell wall and is highly expressed in the panicle. Hormone treatment experiments revealed that OsEXPA7 expression mainly responds to methyl jasmonate, brassinolide, and gibberellin. Transcriptome analysis and RT-qPCR experiments showed that overexpression of OsEXPA7 affects the expression of OsJAZs in the jasmonic acid pathway and BZR1 and GE in the brassinosteroid pathway. In addition, OsEXPA7 regulates the expression of key quantitative trait loci related to yield traits, as well as regulates the expression levels of BIP1 and bZIP50 involved in the seed storage protein biosynthesis pathway. CONCLUSIONS: These results reveal that OsEXPA7 positively regulates rice yield traits and negatively regulates grain quality traits by involving plant hormone pathways and other trait-related pathway genes. These findings increase our understanding of the potential mechanism of expansins in regulating rice yield and quality traits and will be useful for breeding high-yielding and high-quality rice cultivars.

5.
J Inflamm Res ; 17: 1995-2008, 2024.
Article in English | MEDLINE | ID: mdl-38566983

ABSTRACT

Background: Long non-coding RNAs (lncRNAs) associated with immunogenic cell death (ICD) play a pivotal role in tumorigenesis and offer prognostic insights for papillary thyroid carcinoma (PTC) patients. This study delves into the impact of ICD-related lncRNAs on the prognosis of PTC. Methods: PTC samples were accessed from The Cancer Genome Atlas-Thyroid carcinoma database (TCGA-THCA) and consensus cluster analysis to elucidate the influence of ICD-related lncRNA expression. To gauge the prognostic significance of these lncRNAs, we developed a prognostic model. Additionally, we conducted GO and KEGG enrichment analyses, assessed immune cell infiltration (ICI) using CIBERSORT and ssGSEA, examined immune checkpoint expression, tumor mutation burden (TMB), tumor microenvironment (TME), T-cell dysfunction and exclusion (TIDE), TCIA, and drug sensitivity across various groups. A comprehensive suite of in vitro experiments, encompassing EdU labeling, wound scratch assays, Transwell assays, and flow cytometry, were conducted to elucidate the regulatory role of LINC00924 in two PTC cell lines, BCPAP and TPC1, transfected with LINC00924 overexpression plasmids. Results: Two distinct clusters demonstrated varying TME, BRAF, NRAS, and ICI characteristics, suggesting potential immune mechanisms in PTC. Our prognostic model identified seven lncRNAs: SRRM2-AS1, AC008556.1, BHLHE40-AS1, EGOT, AL39066.1, LINC00924, and PICART1. The expression of ICD-related lncRNAs correlated with progression-free interval (PFI) in PTC patients. Overexpression of LINC00924 significantly reduced cell proliferation, migration, and invasion, while augmenting apoptosis in PTC cells. Conclusion: Our findings highlight the potential of ICD-related lncRNAs as prognostic biomarkers for PFI in PTC. In vitro experiments suggest a protective role of LINC00924 in PTC progression.

6.
Front Optoelectron ; 17(1): 12, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38689035

ABSTRACT

Since their inception, frequency combs generated in microresonators, known as microcombs, have sparked significant scientific interests. Among the various applications leveraging microcombs, soliton microcombs are often preferred due to their inherent mode-locking capability. However, this choice introduces additional system complexity because an initialization process is required. Meanwhile, despite the theoretical understanding of the dynamics of other comb states, their practical potential, particularly in applications like sensing where simplicity is valued, remains largely untapped. Here, we demonstrate controllable generation of sub-combs that bypasses the need for accessing bistable regime. And in a graphene-sensitized microresonator, the sub-comb heterodynes produce stable, accurate microwave signals for high-precision gas detection. By exploring the formation dynamics of sub-combs, we achieved 2 MHz harmonic comb-to-comb beat notes with a signal-to-noise ratio (SNR) greater than 50 dB and phase noise as low as - 82 dBc/Hz at 1 MHz offset. The graphene sensitization on the intracavity probes results in exceptional frequency responsiveness to the adsorption of gas molecules on the graphene of microcavity surface, enabling detect limits down to the parts per billion (ppb) level. This synergy between graphene and sub-comb formation dynamics in a microcavity structure showcases the feasibility of utilizing microcombs in an incoherent state prior to soliton locking. It may mark a significant step toward the development of easy-to-operate, systemically simple, compact, and high-performance photonic sensors.

7.
Plant Physiol Biochem ; 210: 108638, 2024 May.
Article in English | MEDLINE | ID: mdl-38653096

ABSTRACT

Evergreen conifers growing in high-latitude regions must endure prolonged winters that are characterized by sub-zero temperatures combined with light, conditions that can cause significant photooxidative stress. Understanding overwintering mechanisms is crucial for addressing winter adversity in temperate forest ecosystems and enhancing the ability of conifers to adapt to climate change. This review synthesizes the current understanding of the photoprotective mechanisms that conifers employ to mitigate photooxidative stress, particularly non-photochemical "sustained quenching", the mechanism of which is hypothesized to be a recombination or deformation of the original mechanism employed by conifers in response to short-term low temperature and intense light stress in the past. Based on this hypothesis, scattered studies in this field are assembled and integrated into a complete mechanism of sustained quenching embedded in the adaptation process of plant physiology. It also reveals which parts of the whole system have been verified in conifers and which have only been verified in non-conifers, and proposes specific directions for future research. The functional implications of studies of non-coniferous plant species for the study of coniferous trees are also considered, as a wide range of plant responses lead to sustained quenching, even among different conifer species. In addition, the review highlights the challenges of measuring sustained quenching and discusses the application of ultrafast-time-resolved fluorescence and decay-associated spectra for the elucidation of photosynthetic principles.


Subject(s)
Chlorophyll , Tracheophyta , Tracheophyta/metabolism , Tracheophyta/physiology , Fluorescence , Chlorophyll/metabolism , Seasons , Photosynthesis/physiology , Light
8.
J Clin Invest ; 134(11)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687617

ABSTRACT

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant , Protein Isoforms , Receptors, Androgen , Male , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Animals , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cell Line, Tumor , Neoplasm Metastasis , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Alternative Splicing , Epithelial-Mesenchymal Transition/genetics , Transcription, Genetic
9.
Chem Sci ; 15(12): 4416-4426, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516087

ABSTRACT

We report for the first time a reversible addition-fragmentation chain transfer polymerisation-induced self-assembly (RAFT-PISA) formulation in ionic liquid (IL) that yields worm gels. A series of poly(2-hydroxyethyl methacrylate)-b-poly(benzyl methacrylate) (PHEMA-b-PBzMA) block copolymer nanoparticles were synthesised via RAFT dispersion polymerisation of benzyl methacrylate in the hydrophilic IL 1-ethyl-3-methyl imidazolium dicyanamide, [EMIM][DCA]. This RAFT-PISA formulation can be controlled to afford spherical, worm-like and vesicular nano-objects, with free-standing gels being obtained over a broad range of PBzMA core-forming degrees of polymerisation (DPs). High monomer conversions (≥96%) were obtained within 2 hours for all PISA syntheses as determined by 1H NMR spectroscopy, and good control over molar mass was confirmed by gel permeation chromatography (GPC). Nanoparticle morphologies were identified using small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), and further detailed characterisation was conducted to monitor rheological, electrochemical and thermal characteristics of the nanoparticle dispersions to assess their potential in future electronic applications. Most importantly, this new PISA formulation in IL facilitates the in situ formation of worm ionogel electrolyte materials at copolymer concentrations >4% w/w via efficient and convenient synthesis routes without the need for organic co-solvents or post-polymerisation processing/purification. Moreover, we demonstrate that the worm ionogels developed in this work exhibit comparable electrochemical properties and thermal stability to that of the IL alone, showcasing their potential as gel electrolytes.

10.
J Ethnopharmacol ; 328: 118015, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38499261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The traditional Chinese medicine (TCM) formula Banxia Xiexin decoction (BXD) has definite therapeutic effect in treating stress-induced gastric ulceration (SIGU) and many other gastrointestinal diseases, but its effect on gastric lymphatic pumping (GLP) remains unclear. AIM OF THE STUDY: Elucidating the role of GLP in SIGU and BXD treatment, and exploring the molecular mechanisms of GLP regulation. MATERIALS AND METHODS: In vivo GLP imaging were performed on SIGU rat model, and the lymphatic dynamic parameters were evaluated. Gastric antrum tissues and serum were collected for macroscopic, histopathological and ulcerative parameters analysis. Gastric lymphatic vessel (GLV) tissues were collected for RNA-Seq assays. Differentially expressed genes (DEGs) were screened from RNA-Seq result and submitted for transcriptomic analysis. Key DEGs and their derivative proteins were measured by qRT-PCR and WB. RESULTS: GLP was significantly suppressed in SIGU rats. BXD could recover GLP, ameliorate stomach lymphostasis, and alleviate the ulcerative damage. Transcriptome analysis of GLV showed the top up-DEGs were concentrated in smooth muscle contraction signaling pathway, while the top the down-DEGs were concentrated in energy metabolism pathways especially fatty acid degradation pathway, which indicated BXD can promote lymphatic smooth muscle contraction, regulate energy metabolism, and reduce fatty acid degradation. The most possible target of these mechanisms was the lymphatic smooth muscle cells (LSMCs) which drove the GLP. This speculation was further validated by the qRT-PCR and WB assessments for the level of key genes and proteins. CONCLUSIONS: By activating the smooth muscle contraction signaling pathway, restoring energy supply, modulating energy metabolism program and reducing fatty acid degradation, BXD effectively recovered GLP, mitigated the accumulation of inflammatory cytokines and metabolic wastes in the stomach, which importantly contributes to its efficacy in treating SIGU.


Subject(s)
Drugs, Chinese Herbal , Lymphatic Vessels , Stomach Ulcer , Rats , Animals , Stomach Ulcer/drug therapy , Stomach Ulcer/metabolism , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Energy Metabolism , Lymphatic Vessels/metabolism , Fatty Acids/therapeutic use
11.
ACS Pharmacol Transl Sci ; 7(3): 733-742, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38481691

ABSTRACT

Calcitonin (CT) is a peptide hormone secreted by the parafollicular C cells of the thyroid gland, salmon calcitonin was originally extracted from the hind cheek of salmon. Neointimal hyperplasia refers to the excessive proliferation and migration of vascular smooth muscle cells (VSMCs). In this study, a rat model of restenosis was employed to explore the impact of calcitonin on neointima proliferation. Calcitonin was administered via continuous injections for a duration of 14 days postsurgery, and the expression of proteins associated with proliferation, migration, and phenotypic switching was assessed using the vascular smooth muscle cells. Additionally, metabolomic analyses were conducted to shed light on the mechanisms that underlie the role of calcitonin in the development of cardiovascular disease. In our study, we found that calcitonin possesses the capability to dispute the proliferation, migration, and phenotypic transformation of VSMCs induced by platelet-derived growth factor-BB (PDGF-BB) and 15% fetal bovine serum in vitro. Calcitonin has demonstrated a favorable impact on smooth muscle cells, both in vitro and in vivo. More specifically, it has been observed to mitigate phenotypic switching, proliferation, and migration of these cells. Moreover, calcitonin has been identified as a protective factor against phenotypic switching and the formation of neointima, operating through the AMP-activated protein kinase/mechanistic target of rapamycin (mTOR) pathway.

12.
Ann Nucl Med ; 38(5): 360-368, 2024 May.
Article in English | MEDLINE | ID: mdl-38407800

ABSTRACT

OBJECTIVE: In this study, the uptake characteristics of [18F]fibroblast activation protein inhibitor (FAPI) molecular imaging probe were investigated in acute radiation pneumonia and lung cancer xenografted mice before and after radiation to assess the future applicability of [18F]FAPI positron emission tomography/computed tomography (PET/CT) imaging in early radiotherapy response. METHODS: Initially, the biodistribution of [18F]FAPI tracer in vivo were studied in healthy mice at each time-point. A comparison of [18F]FAPI and [18F]fluorodeoxyglucose (FDG) PET/CT imaging efficacy in normal ICR, LLC tumor-bearing mice was evaluated. A radiation pneumonia model was then investigated using a gamma counter, small animal PET/CT, and autoradiography. The uptake properties of [18F]FAPI in lung cancer and acute radiation pneumonia were investigated using autoradiography and PET/CT imaging in mice. RESULTS: The tumor area was visible in [18F]FAPI imaging and the tracer was swiftly eliminated from normal tissues and organs. There was a significant increase of [18F]FDG absorption in lung tissue after radiotherapy compared to before radiotherapy, but no significant difference of [18F]FAPI uptake under the same condition. Furthermore, both the LLC tumor volume and the expression of FAP-ɑ decreased after thorax irradiation. Correspondingly, there was no notable [18F]FAPI uptake after irradiation, but there was an increase of [18F]FDG uptake in malignancies and lungs. CONCLUSIONS: The background uptake of [18F]FAPI is negligible. Moreover, the uptake of [18F]FAPI may not be affected by acute radiation pneumonitis compared to [18F]FDG, which may be used to more accurately evaluate early radiotherapy response of lung cancer with acute radiation pneumonia.


Subject(s)
Lung Neoplasms , Quinolines , Radiation Pneumonitis , Animals , Mice , Mice, Inbred ICR , Radiation Pneumonitis/diagnostic imaging , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Tissue Distribution , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/radiotherapy , Disease Models, Animal , Gallium Radioisotopes
13.
Eur J Pharmacol ; 968: 176422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38365108

ABSTRACT

Vascular smooth muscle cells (VSMCs) contribute to neointimal hyperplasia (NIH) after vascular injury, a common feature of vascular remodelling disorders. Suramin is known to exert antitumour effects by inhibiting the proliferation of various tumour cells; however, its effects and mechanism on VSMCs remain unclear. This study investigated the effects of suramin on human aortic smooth muscle cells (HASMCs), rat aortic smooth muscle cells (RASMCs) and NIH to examine its suitability for the prevention of vascular remodelling disorders. In vitro, suramin administration reduced platelet-derived growth factor type BB (PDGF-BB)-stimulated proliferation, migration, and dedifferentiation of VSMCs through a transforming growth factor beta receptor 1 (TGFBR1)/Smad2/3-dependent pathway. Suramin dramatically inhibited NIH ligation in the left common carotid artery (LCCA) vivo. Therefore, our results indicate that suramin protects against the development of pathological vascular remodelling by attenuating VSMCs proliferation, migration, and phenotypic transformation and may be used as a potential medicine for the treatment of NIH.


Subject(s)
Neointima , Suramin , Rats , Humans , Animals , Hyperplasia/pathology , Cell Proliferation , Suramin/pharmacology , Suramin/metabolism , Neointima/pathology , Muscle, Smooth, Vascular , Receptor, Transforming Growth Factor-beta Type I/metabolism , Vascular Remodeling , Becaplermin/pharmacology , Myocytes, Smooth Muscle , Cell Movement , Cells, Cultured
14.
Nat Prod Rep ; 41(4): 649-671, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38193577

ABSTRACT

Covering: up to the end of 2023Natural nitriles comprise a small set of secondary metabolites which however show intriguing chemical and functional diversity. Various patterns of nitrile biosynthesis can be seen in animals, plants, and microorganisms with the characteristics of both evolutionary divergence and convergence. These specialized compounds play important roles in nitrogen metabolism, chemical defense against herbivores, predators and pathogens, and inter- and/or intraspecies communications. Here we review the naturally occurring nitrile-forming pathways from a biochemical perspective and discuss the biological and ecological functions conferred by diversified nitrile biosyntheses in different organisms. Elucidation of the mechanisms and evolutionary trajectories of nitrile biosynthesis underpins better understandings of nitrile-related biology, chemistry, and ecology and will ultimately benefit the development of desirable nitrile-forming biocatalysts for practical applications.


Subject(s)
Nitriles , Plants , Nitriles/metabolism , Nitriles/chemistry , Molecular Structure , Plants/metabolism , Animals
15.
Sci Total Environ ; 916: 170222, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38244630

ABSTRACT

The internal floating-roof tank is the main type of storage tank for refined oil products. The volatile organic compounds (VOCs) emission from the internal floating-roof tank plays a dominant role in the unorganized emission source of the oil depot. In this study, we selected six typical oil depots in Beijing to investigate VOC emission characteristics from the tank top vent hole using infrared imaging technology and flame ionization detector (FID). The results reveal that infrared thermal imager is efficient in quickly identifying the emission level of the tank discharge point. The ambient temperature and wind speed have a direct effect on sealing loss, the turnover can greatly influence the wall hanging loss, and the concentration of VOCs emitted from the tank top vent hole is negatively correlated with liquid height. Furthermore, the influence of accessories type of the internal floating-roof tank on the concentration of VOCs emission from the top vent hole is also studied when other parameters remain unchanged, and find the floating deck type and sealing mode have a significant influence on their VOCs emissions, of which the combination of pontoon type floating deck and secondary seal are effective in controlling the concentration of VOCs emitted from the tank top vent hole. Finally, based on our experimental results, several feasible emission reduction strategies are proposed in terms of source prevention and process control in order to achieve the fine management of the whole process. This paper provides important technical support and policy thoughts for VOCs emission control during oil storage.

16.
Adv Healthc Mater ; 13(6): e2303031, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37848188

ABSTRACT

Thermal ablation is a crucial therapeutic modality for hepatocellular carcinoma (HCC), but its efficacy is often hindered by the high recurrence rate attributed to insufficient ablation. Furthermore, the residual tumors following insufficient ablation exhibit a more pronounced immunosuppressive state, which accelerates the disease progression and leads to immune checkpoint blockade (ICB) resistance. Herein, evidence is presented that heightened intratumoral lactate accumulation, stemming from the augmented glycolytic activity of postablative residual HCC cells, may serve as a crucial driving force in exacerbating the immunosuppressive state of the tumor microenvironment (TME). To address this, an injectable nanoparticles-hydrogel composite system (LOX-MnO2 @Gel) is designed that gradually releases lactate oxidase (LOX)-loaded hollow mesoporous MnO2 nanoparticles at the tumor site to continuously deplete intratumoral lactate via a cascade catalytic reaction. Using subcutaneous and orthotopic HCC tumor-bearing mouse models, it is confirmed that LOX-MnO2 @Gel-mediated local lactate depletion can transform the immunosuppressive postablative TME into an immunocompetent one and synergizes with ICB therapy to significantly inhibit residual HCC growth and lung metastasis, thereby prolonging the survival of mice postablation. The work proposes an appealing strategy for synergistically combining antitumor metabolic therapy with immunotherapy to combat postablative HCC recurrence.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Animals , Mice , Lactic Acid , Carcinoma, Hepatocellular/therapy , Hydrogels , Manganese Compounds/pharmacology , Liver Neoplasms/therapy , Oxides , Immunotherapy , Tumor Microenvironment
18.
Brief Bioinform ; 25(1)2023 11 22.
Article in English | MEDLINE | ID: mdl-38095856

ABSTRACT

The success of immune checkpoint blockade (ICB) promotes the immunotherapy to be a new pillar in cancer treatment. However, the low response rate of the ICB therapy limits its application. To increase the response rate and enhance efficacy, the ICB combination therapy has emerged and its clinical trials are increasing. Nevertheless, the gene expression profile and its pattern of ICB combination were not comprehensively studied, which limits the understanding of the ICB combination therapy and the identification of new drugs. Here, we constructed ICBcomb (http://bioinfo.life.hust.edu.cn/ICBcomb/), a comprehensive database, by analyzing the human and mouse expression data of the ICB combination therapy and comparing them between groups treated with ICB, other drugs or their combinations. ICBcomb contains 1399 samples across 29 cancer types involving 52 drugs. It provides a user-friendly web interface for demonstrating the results of the available comparisons in the ICB combination therapy datasets with five functional modules: [1, 2] the 'Dataset/Disease' modules for browsing the expression, enrichment and comparison results in each dataset or disease; [3] the 'Gene' module for inputting a gene symbol and displaying its expression and comparison results across datasets/diseases; [4] the 'Gene Set' module for GSVA/GSEA enrichment analysis on the built-in gene sets and the user-input gene sets in different comparisons; [5] the 'Immune Cell' module for immune cell infiltration comparison between different groups by immune cell abundance analysis. The ICBcomb database provides the first resource for gene expression profile and comparison in ICB combination therapy, which may provide clues for discovering the mechanism of effective combination strategies and new combinatory drugs.


Subject(s)
Immune Checkpoint Inhibitors , Immunotherapy , Humans , Animals , Mice , Databases, Factual , Gene Regulatory Networks
19.
Clin Hemorheol Microcirc ; 85(4): 385-393, 2023.
Article in English | MEDLINE | ID: mdl-37781795

ABSTRACT

OBJECTIVE: We explored the effectiveness of an online/offline mixed-mode Tai Chi cardiac rehabilitation program on the microcirculation of patients with coronary artery disease (CAD). DESIGN: Prospective, randomized controlled study. SETTING: It was conducted in a tertiary hospital. SUBJECTS: Twenty-six patients who met the diagnostic criteria for coronary artery disease were recruited. INTERVENTIONS: Patients were randomized divided into a 12-week Tai Chi cardiac rehabilitation program(TCCRP) or a conventional exercise rehabilitation program(CERP) in a 1:1 fashion, 4 weeks of in-hospital rehabilitation and 8 weeks of online rehabilitation at home (a total of 12 weeks of intervention). MAIN OUTCOME MEASURES: Nailfold microcirculation (Morphological integrals, Blood flow integrals, Periphery capillary loop integrals, Overall integrals). MAIN OUTCOME MEASURES: Twenty patients completed the study. The Morphological integrals (baseline: 2.875±1.171 vs 12weeks: 1.863±0.414, t = 2.432, P = 0.045 < 0.05) and Overall integrals (baseline: 5.563±2.001 vs 12weeks: 3.688±1.167, t = 3.358, P = 0.012 < 0.05) decreased significantly in the TCCRP, The nailfold microcirculation integra decreased not significantly in the CERP (P > 0.05). The nailfold microcirculation integra was not significantly different between the two groups after the intervention (P > 0.05). CONCLUSIONS: The TCCRP improved the microcirculation of patients with CAD.


Subject(s)
Cardiac Rehabilitation , Coronary Artery Disease , Tai Ji , Humans , Prospective Studies , Microcirculation , Treatment Outcome , Quality of Life
20.
ACS Appl Mater Interfaces ; 15(41): 47955-47968, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812458

ABSTRACT

Reactive oxygen species (ROS) generation, using photodynamic therapy (PDT) and chemodynamic therapy (CDT), is a promising strategy for cancer treatment. However, the production of ROS in tumor cells is often limited by hypoxia, insufficient substrates, and high level of ROS scavengers in a tumor microenvironment, which seriously affects the efficacy of ROS-related tumor therapies. Herein, we report a lipid-supported manganese oxide nanozyme, MLP@DHA&Ce6, by decorating a MnO2 nano-shell on the liposome loaded with dihydroartemisinin (DHA) and photosensitizer Ce6 for generating multisource ROS to enhance cancer therapy. MLP@DHA&Ce6 can be accumulated in tumors and can release active components, Mn2+ ions, and O2. The conjugate generates ROS via nanozyme-catalyzed CDT using DHA as a substrate, PDT through Ce6, and the Fenton reaction catalyzed by Mn2+ ions. The production of O2 from MnO2 enhanced Ce6-mediated PDT under near-infrared light irradiation. Meanwhile, MLP@DHA&Ce6 showed prominent glutathione depletion, which allowed ROS to retain high activity in tumor cells. In addition, the release of Mn2+ ions and DHA in tumor cells induced ferroptosis. This multisource ROS generation and ferroptosis effect of MLP@DHA&Ce6 led to enhanced therapeutic effects in vivo.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species/pharmacology , Manganese Compounds/pharmacology , Peroxides/pharmacology , Cell Line, Tumor , Oxides/pharmacology , Photosensitizing Agents/therapeutic use , Neoplasms/drug therapy , Oxygen/pharmacology , Hydrogen Peroxide/pharmacology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...