Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phytother Res ; 37(12): 5509-5528, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37641491

ABSTRACT

The pathogenesis of ischemic stroke is complex, and PI3K/Akt signaling is considered to play a crucial role in it. The PI3K/Akt pathway regulates inflammation, oxidative stress, apoptosis, autophagy, and vascular endothelial homeostasis after cerebral ischemia; therefore, drug research targeting the PI3K/Akt pathway has become the focus of scientists. In this review, we analyzed the research reports of antiischemic stroke drugs targeting the PI3K/Akt pathway in the past two decades. Because of the rich sources of natural products, increasing studies have explored the value of natural compounds, including Flavonoids, Quinones, Alkaloids, Phenylpropanoids, Phenols, Saponins, and Terpenoids, in alleviating neurological impairment and achieved satisfactory results. Herbal extracts and medicinal formulas have been applied in the treatment of ischemic stroke for thousands of years in East Asian countries. These precious clinical experiences provide a new avenue for research of antiischemic stroke drugs. Finally, we summarize and discuss the characteristics and shortcomings of the current research and put forward prospects for further in-depth exploration.


Subject(s)
Ischemic Stroke , Stroke , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Ischemic Stroke/drug therapy , Stroke/drug therapy , Stroke/pathology , Phytotherapy
2.
J Affect Disord ; 339: 531-537, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37463643

ABSTRACT

Prenatal stress (PS) increases offspring susceptibility to depression, but the underlying mechanism remains unclear. Our previous results showed that PS can affect depression-like behavior in offspring through neurotransmitters and neuroinflammatory substances in the hippocampus and frontal cortex. In recent years there has been increasing evidence for a role of the gut microbiome in depression. The brain-gut axis theory suggests there is a need to further explore the mechanism involving the gut microbiome in the susceptibility of offspring to depression caused by PS. In the present study we used a stress model relevant to depression in which pregnant female rats undergo prenatal restraint stress and the offspring show susceptibility to depression. High-resolution gene sequencing for 16S ribosomal RNA markers and non-targeted metabolomic analysis were used to evaluate the fecal microbiome and the availability of metabolites, respectively. PS was found to induce depressive-like behavior in susceptible offspring (PS-S), as detected by the sucrose preference and forced swimming tests, as well as altering Alpha and Beta diversity. The different microbiota between the PS-S and control groups were mainly involved in membrane transport, carbohydrate metabolism, amino acid metabolism, and replication and repair pathways. In total, 237 and 136 important differential metabolites with significant influence on modeling analysis were obtained under positive and negative modes, respectively. The main canonical pathways found to be altered were glycerophospholipid metabolism and glycerolipid metabolism. These results suggest that gut microbiota might contribute to the onset of PS-induced depression-like behavior by affecting the glycerophospholipid and glycerolipid metabolic pathways.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Pregnancy , Rats , Female , Animals , Depression/etiology , Metabolome , Metabolomics
3.
Pharmacol Res ; 193: 106803, 2023 07.
Article in English | MEDLINE | ID: mdl-37230158

ABSTRACT

Although strides have been made, the challenge of preventing and treating ischemic stroke continues to persist globally. For thousands of years, the natural substances Frankincense and Myrrh have been employed in Chinese and Indian medicine to address cerebrovascular diseases, with the key components of 11-keto-ß-boswellic acid (KBA) and Z-Guggulsterone (Z-GS) being the active agents. In this study, the synergistic effect and underlying mechanism of KBA and Z-GS on ischemic stroke were examined using single-cell transcriptomics. Fourteen cell types were identified in KBA-Z-GS-treated ischemic penumbra, and microglia and astrocytes account for the largest proportion. They were further re-clustered into six and seven subtypes, respectively. GSVA analysis reflected the distinct roles of each subtype. Pseudo-time trajectory indicated that Slc1a2 and Timp1 were core fate transition genes regulated by KBA-Z-GS. In addition, KBA-Z-GS synergistically regulated inflammatory reactions in microglia and cellular metabolism and ferroptosis in astrocytes. Most notably, we established an innovative drug-gene synergistic regulation pattern, and genes regulated by KBA-Z-GS were divided into four categories based on this pattern. Finally, Spp1 was demonstrated as the hub target of KBA-Z-GS. Taken together, this study reveals the synergistic mechanism of KBA and Z-GS on cerebral ischemia, and Spp1 may be the synergistic target for that. Precise drug development targeting Spp1 may offer a potential therapeutic approach for treating ischemic stroke.


Subject(s)
Ischemic Stroke , Triterpenes , Humans , Transcriptome , Triterpenes/pharmacology , Triterpenes/therapeutic use
4.
Chem Biol Interact ; 354: 109846, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35123992

ABSTRACT

Chronic kidney disease (CKD) has become a major public health problem worldwide. Renal fibrosis is considered to be the final outcome and potential therapeutic target of CKD. Z-Guggulsterone (Z-GS), an active compound derived from Commiphora mukul, has been proved to be effective in various diseases. The present study was aimed to evaluate the effect and mechanism of Z-GS on renal fibrosis. Unilateral ureteral obstruction (UUO) mice and hypoxia-induced HK-2 cells were used to simulate renal fibrosis, respectively. The mice and cells were treated with different doses of Z-GS to observe the pharmacological action. Results demonstrated that Z-GS lightened renal function and histopathological injury induced by UUO. Z-GS also alleviated renal fibrosis in mice by inhibiting the expressions of α-SMA, TGF-ß, and Collagen Ⅳ. Besides, Z-GS delayed G2/M cycle arrest by promoting the expressions of CDK1 and CyclinB1. Experiments in vitro indicated that Z-GS increased cell viability while decreased LDH release in hypoxia-induced HK-2 cells. In addition, fibrosis and G2/M cycle arrest induced by hypoxia in HK-2 cells were retarded by Z-GS. The study of its possible mechanism exhibited that Z-GS increased the level of Klotho and inhibited p53 level. Nevertheless, the effect of Z-GS on Klotho/p53 signaling was reversed by siRNA-Klotho. Moreover, siRNA-Klotho eliminated the effects of Z-GS on G2/M cycle arrest and fibrosis. Taken together, this study clarified that Z-GS alleviated renal fibrosis and G2/M cycle arrest through Klotho/p53 signaling. People who have suffered CKD may potentially benefit from treatment with Z-GS.


Subject(s)
Tumor Suppressor Protein p53
5.
Cell Mol Life Sci ; 79(3): 137, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35182235

ABSTRACT

Renal interstitial fibrosis is the pathological basis of end-stage renal disease, in which the heterogeneity of macrophages in renal microenvironment plays an important role. However, the molecular mechanisms of macrophage plasticity during renal fibrosis progression remain unclear. In this study, we found for the first time that increased expression of Twist1 in macrophages was significantly associated with the severity of renal fibrosis in IgA nephropathy patients and mice with unilateral ureteral obstruction (UUO). Ablation of Twist1 in macrophages markedly alleviated renal tubular injury and renal fibrosis in UUO mice, accompanied by a lower extent of macrophage infiltration and M2 polarization in the kidney. The knockdown of Twist1 inhibited the chemotaxis and migration of macrophages, at least partially, through the CCL2/CCR2 axis. Twist1 downregulation inhibited M2 macrophage polarization and reduced the secretion of the profibrotic factors Arg-1, MR (CD206), IL-10, and TGF-ß. Galectin-3 was decreased in the macrophages of the conditional Twist1-deficient mice, and Twist1 was shown to directly activate galectin-3 transcription. Up-regulation of galectin-3 recovered Twist1-mediated M2 macrophage polarization. In conclusion, Twist1/galectin-3 signaling regulates macrophage plasticity (M2 phenotype) and promotes renal fibrosis. This study could suggest new strategies for delaying kidney fibrosis in patients with chronic kidney disease.


Subject(s)
Fibrosis/pathology , Galectin 3/metabolism , Kidney Diseases/pathology , Macrophage Activation , Twist-Related Protein 1/metabolism , Ureteral Obstruction/complications , Animals , Fibrosis/etiology , Fibrosis/metabolism , Galectin 3/genetics , Humans , Kidney Diseases/etiology , Kidney Diseases/metabolism , Male , Mice , Mice, Inbred C57BL , Signal Transduction , Twist-Related Protein 1/genetics
6.
Int Immunopharmacol ; 89(Pt B): 107094, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33129097

ABSTRACT

Ischemic stroke is a serious and life-threatening cerebrovascular thrombotic disease; however, the therapeutic strategy is limited for the complicated mechanism and narrow therapeutic window. Our previous study suggested that Z-Guggulsterone (Z-GS), an active component derived from myrrh, is a good candidate for cerebral injury. The object of this study is to investigate the exact mechanisms of Z-GS in cerebral ischemic stroke. Rats were used to conduct middle cerebral artery occlusion (MCAO) model and were treated with different dosage of Z-GS. Morphological results showed that Z-GS significantly alleviated neurological deficits, infarct volume and histopathological damage in MCAO rats. A total of 8276 differentially expressed genes were identified based on microarray analysis. Oxidation-reduction process and inflammatory response were enriched as the significant gene ontology items. TXNIP and NLRP3 were screened as the potential target genes by Series Test of Cluster (STC) analysis. The results were validated by immunohistochemistry and immunofluorescence staining. Besides, Z-GS successfully inhibited oxidative stress and inflammatory response in oxygen-glucose deprivation (OGD) treated neurons. Knockdown of TXNIP significantly decreased the expression of NLRP3 in OGD-induced neurons. In addition, Z-GS treatment scarcely changed the expressions of NLRP3 in siRNA-TXNIP pretreated cells compared with the siRNA-TXNIP alone treatment group, suggesting that the neuroprotective effect of Z-GS was dependent on TXNIP-NLRP3 axis. Taken together, this study revealed that Z-GS exerted neuroprotective property through alleviated oxidative stress and inflammation via inhibiting the TXNIP/NLRP3 axis. Z-GS could be considered as a promising candidate for the treatment of ischemic stroke.


Subject(s)
Cell Cycle Proteins/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Pregnenediones/pharmacology , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Brain Injuries/drug therapy , Brain Injuries/etiology , Cell Cycle Proteins/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Gene Knockdown Techniques , Infarction, Middle Cerebral Artery/complications , Inflammation/metabolism , Injections, Intraperitoneal , Ischemic Stroke/etiology , Male , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/administration & dosage , Oligonucleotide Array Sequence Analysis , Pregnenediones/administration & dosage , Primary Cell Culture , Rats, Sprague-Dawley
7.
FASEB J ; 34(2): 2554-2567, 2020 02.
Article in English | MEDLINE | ID: mdl-31909536

ABSTRACT

Hypoxia-induced extracellular matrix (ECM) deposition is an important cause of renal fibrosis that is triggered by unknown mechanisms. Human epididymis secretory protein 4 (HE4) is a newly discovered key molecule that causes ECM deposition. We used the unilateral ureteral obstruction (UUO) mouse model to investigate the expression and mechanisms of HE4 in the pathogenesis of renal fibrosis. Results were confirmed in the HK2 cell line and in human donors of kidney tissue with chronic kidney disease. Hypoxia significantly increased HE4 in renal tubular epithelial cells. HE4 overexpression activated the NF-κB pathway through the NF-κB transcription-activating group P65 by phosphorylation and nuclear translocation. NF-κB upregulated tissue inhibitor metalloproteinases 1, which may inhibit ECM degradation through inhibition of matrix metallopeptidase 2 activity. Silencing HE4 inhibited hypoxia-induced ECM deposition and alleviated fibrosis in UUO mice in vivo and blocked NF-κB activation in vitro. Expression of HE4 in the tubulointerstitium was positively correlated with tubulointerstitial fibrosis in tissue samples from patients with chronic kidney disease. Our results suggest that hypoxia induces renal fibrosis by upregulating HE4 and activating the HIF-1α/HE4/NF-κB signaling pathway. Uncovering the molecular mechanisms and function of HE4 overexpression in hypoxia-induced renal fibrosis will provide important insights into understanding renal fibrosis and antifibrotic strategies.


Subject(s)
Epithelial Cells/metabolism , Fibrosis/metabolism , Hypoxia/metabolism , Ureteral Obstruction/metabolism , Animals , Disease Models, Animal , Extracellular Matrix/metabolism , Kidney Diseases/pathology , Male , Mice, Inbred C57BL , NF-kappa B/metabolism , Transcriptional Activation/physiology , Transforming Growth Factor beta1/metabolism
8.
Mikrochim Acta ; 186(7): 410, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31183622

ABSTRACT

Mesoporous silica nanospheres (MSNs) are used in a triple signal amplification chemiluminescent (CL) assay for microRNA-21. It is based on (a) the synergistic amplification via loading and controlled-release of signal reagents by MSNs, (b) target recycling amplification, and (c) the enhancement effect of graphene oxide quantum dots (GOQD). CL is generated by the bis(2,4,6-trichlorophenyl) oxalate (TCPO) and H2O2 reaction in the presence of the fluorophore rhodamine B (RB). RB is firstly loaded into the pores of MSNs modified with amino groupsand coupled with ssDNA. Then, the pores are capped by GOQD. Upon the addition of microRNA-21 into the system, the designed ssDNA assumes a double stranded structure. With the aid of duplex-specific nuclease, the double strand structure is cleaved and the free microRNA-21 enters into the next cycling process to combine with other ssDNA forming double strand structures. After several cycling process, amounts of GOQDs departing from the surface of MSNs cause the opening of the pores of MSNs and the release of RB causes the CL of TCPO-H2O2 reaction system. Free GOQDs can lead to a further CL enhancement. By this method, even a low amount of microRNA-21 leads to a large number of released RB molecules and triggers high-intensity CL. The method was applied in an assay where the CL signal increases linearly with the logarithm of the microRNA-21 concentration in the range of 0.005-50 pmol L-1 and the detection limit is 1.7 fmol L-1 (at 3σ). Graphical abstract Schematic presentation of a triple signal amplification chemiluminescence (CL) analysis platform based on rodamine B (RB) loading and controlled release, target recycling amplification and graphene oxide quantum dots (GOQD) as the enhancer for analysis of microRNA-21 in human serum.


Subject(s)
Biomarkers, Tumor/analysis , Luminescent Measurements/methods , MicroRNAs/analysis , Nucleic Acid Amplification Techniques/methods , Biosensing Techniques/methods , DNA, Single-Stranded/chemistry , Fluorescent Dyes/chemistry , Graphite/chemistry , Humans , Hydrogen Peroxide/chemistry , Limit of Detection , MicroRNAs/blood , Nanospheres/chemistry , Nucleic Acid Conformation , Oxalates/chemistry , Quantum Dots/chemistry , Rhodamines/chemistry , Silicon Dioxide/chemistry
9.
FASEB J ; 33(2): 1565-1577, 2019 02.
Article in English | MEDLINE | ID: mdl-30183377

ABSTRACT

Hypoxia plays an important role in the development of renal fibrosis. G2/M arrest in renal tubular cells is an important pathway in the development of chronic kidney disease. It is unknown whether hypoxia leads to renal fibrosis via the regulation of G2/M arrest in renal tubular epithelial cells. For the first time, to our knowledge, we showed that hypoxia induces G2/M arrest in renal tubular cells leading to renal fibrosis, and microRNAs are involved in this regulation. We compared microRNA expression between hypoxia and normoxia in HK2 cells and found microRNA (miR)-493 to be highly expressed at 24 and 48 h after hypoxia. The overexpression of miR-493 reduced the expression of the cell cycle regulator, Stathmin (STMN)-1, and increased the percentage of G2/M phase cells and profibrotic factors in HK2 cells. Targeting STMN-1 with short hairpin RNA produced an effect similar to that of miR-493 overexpression. On contrast, the miR-493 inhibitor reversed these effects in vitro. Consistent with these results, miR-493 sponge adeno-associated virus reduced the expression of profibrotic factors and increased STMN-1 in vivo. In summary, these results suggest that the miR-493-STMN-1 pathway contributes to hypoxia-induced tubular epithelial cell G2/M arrest and renal fibrosis. Abrogating G2/M arrest and blocking the miR-493-STMN-1 pathway will provide further insight for the development of antifibrosis therapy.-Liu, T., Liu, L., Liu, M., Du, R., Dang, Y., Bai, M., Zhang, L., Ma, F., Yang, X., Ning, X., Sun, S. MicroRNA-493 targets STMN-1 and promotes hypoxia-induced epithelial cell cycle arrest In G2/M and renal fibrosis.


Subject(s)
Cell Cycle Checkpoints/genetics , Cell Division , G2 Phase , Hypoxia/metabolism , Kidney Diseases/pathology , MicroRNAs/genetics , Stathmin/genetics , Adult , Animals , Cell Line , Female , Fibrosis/pathology , Fibrosis/prevention & control , Humans , Kidney Diseases/prevention & control , Kidney Tubules/pathology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Young Adult
10.
J Mol Cell Biol ; 11(5): 371-382, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30032308

ABSTRACT

Hypoxia plays an important role in the genesis and progression of renal fibrosis. The underlying mechanisms, however, have not been sufficiently elucidated. We examined the role of p53 in hypoxia-induced renal fibrosis in cell culture (human and rat renal tubular epithelial cells) and a mouse unilateral ureteral obstruction (UUO) model. Cell cycle of tubular cells was determined by flow cytometry, and the expression of profibrogenic factors was determined by RT-PCR, immunohistochemistry, and western blotting. Chromatin immunoprecipitation and luciferase reporter experiments were performed to explore the effect of HIF-1α on p53 expression. We showed that, in hypoxic tubular cells, p53 upregulation suppressed the expression of CDK1 and cyclins B1 and D1, leading to cell cycle (G2/M) arrest (or delay) and higher expression of TGF-ß, CTGF, collagens, and fibronectin. p53 suppression by siRNA or by a specific p53 inhibitor (PIF-α) triggered opposite effects preventing the G2/M arrest and profibrotic changes. In vivo experiments in the UUO model revealed similar antifibrotic results following intraperitoneal administration of PIF-α (2.2 mg/kg). Using gain-of-function, loss-of-function, and luciferase assays, we further identified an HRE3 region on the p53 promoter as the HIF-1α-binding site. The HIF-1α-HRE3 binding resulted in a sharp transcriptional activation of p53. Collectively, we show the presence of a hypoxia-activated, p53-responsive profibrogenic pathway in the kidney. During hypoxia, p53 upregulation induced by HIF-1α suppresses cell cycle progression, leading to the accumulation of G2/M cells, and activates profibrotic TGF-ß and CTGF-mediated signaling pathways, causing extracellular matrix production and renal fibrosis.


Subject(s)
Cell Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Binding Sites , Cell Line , Disease Models, Animal , Female , G2 Phase Cell Cycle Checkpoints , Humans , Male , Mice , Mice, Inbred C57BL , RNA Interference , RNA, Small Interfering/metabolism , Rats , Transcriptional Activation , Transforming Growth Factor beta/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Up-Regulation , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
11.
Exp Ther Med ; 16(4): 3233-3240, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30214546

ABSTRACT

Acute kidney injury (AKI) is a hyper-inflammation-induced abrupt loss of kidney function and has become a major public health problem. The cecal ligation and puncture (CLP) model of peritonitis in rat pups mimics the development of sepsis-induced pediatric AKI is pre-renal without morphological changes of the kidneys and high lethality. Resveratrol, a natural polyphenolic compound with low toxicity, has obvious anti-oxidant and anti-inflammatory properties. The present study aimed to determine whether resveratrol alleviates pediatric AKI and investigated the potential mechanism. Thus, a CLP model of 17-18 day-old rat pups was used to mimic the development of sepsis-induced AKI in children. In the group treated with resveratrol, renal injury induced by CLP was alleviated with downregulation of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and kidney injury molecule (KIM)-1 expression. Nuclear factor-erythroid-2-related factor 2 (Nrf2) signaling is known to effectively inhibit inflammation, the present study found that resveratrol reduced the lipopolysaccharide-induced inflammatory response in kidney cells in vitro and induced the activation of Nrf2 signaling, including accumulation of nuclear Nrf2 and increase of the expression of Nrf2 target genes heme oxygenase (HO)-1 and NAD(P)H dehydrogenase (quinone) 1 (NQO1); this was confirmed by the induction of the expression of HO-1 and NQO1 by treatment of resveratrol in vitro and in vivo. Of note, knockdown of Nrf2 effectively abrogated the downregulation of TNF-α, IL-1ß and KIM-1 expression induced by resveratrol in vitro. These results suggested that resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric model of AKI via the Nrf2 signaling pathway.

12.
J Neurochem ; 147(6): 803-815, 2018 12.
Article in English | MEDLINE | ID: mdl-30168601

ABSTRACT

Inflammatory damage plays a pivotal role in ischemic stroke pathogenesis and may represent one of the therapeutic targets. Z-Guggulsterone (Z-GS), an active component derived from myrrh, has been used to treat various diseases. The traditional uses suggest that myrrh is a good candidate for anti-inflammatory damage. This study was to investigate the anti-inflammatory and neuroprotective effects of Z-GS following cerebral ischemic injury, as well as the exact mechanisms behind them. Rat middle cerebral artery occlusion (MCAO) model and in vitro astrocytes oxygen-glucose deprivation (OGD) model were adopted to simulate ischemic stroke. Z-GS (30 or 60 mg/kg) was administered intraperitoneally immediately after reperfusion, while astrocytes were maintained in 30 or 60 µM Z-GS before OGD treatment. The results indicated that Z-GS significantly alleviated neurological deficits, infarct volume and histopathological damage in vivo, and increased the astrocytes viability in vitro. Moreover, the treatment of Z-GS inhibited the astrocytes activation and down-regulated the mRNA levels of pro-inflammatory cytokines. Furthermore, the activated TLR4-NF-κB signaling pathways induced by MCAO or OGD were significantly suppressed by Z-GS treatment, which was achieved via inhibiting the phosphorylation of JNK. Our results demonstrated that Z-GS exerted neuroprotective and anti-inflammatory properties through preventing activation of TLR4-mediated pathway in the activated astrocytes after ischemia injury. Therefore, Z-GS could be considered as a promising candidate for the treatment of ischemic stroke.


Subject(s)
Astrocytes/drug effects , Brain Ischemia/pathology , Inflammation/pathology , Neuroprotective Agents/therapeutic use , Pregnenediones/therapeutic use , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Brain Ischemia/complications , Brain Ischemia/drug therapy , Cytokines/biosynthesis , Down-Regulation , Glucose/deficiency , Hypoxia/pathology , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/pathology , Inflammation/drug therapy , Inflammation/etiology , Male , Neuroprotective Agents/pharmacology , Pregnenediones/pharmacology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Treatment Outcome
13.
J Cell Mol Med ; 22(10): 4997-5007, 2018 10.
Article in English | MEDLINE | ID: mdl-30054990

ABSTRACT

Acetyl-11-keto-ß-boswellic acid (AKBA), an active triterpenoid compound from the extract of Boswellia serrate, has been reported previously in our group to alleviate fibrosis in vascular remodelling. This study aimed to elucidate the in vivo and in vitro efficacy and mechanism of AKBA in renal interstitial fibrosis. The experimental renal fibrosis was produced in C57BL/6 mice via unilateral ureteral obstruction (UUO). Hypoxia-induced HK-2 cells were used to imitate the pathological process of renal fibrosis in vitro. Results showed that the treatment of AKBA significantly alleviated UUO-induced impairment of renal function and improved the renal fibrosis by decreasing the expression of TGF-ß1, α-SMA, collagen I and collagen IV in UUO kidneys. In hypoxia-induced HK-2 cells, AKBA displayed remarkable cell protective effects and anti-fibrotic properties by increasing the cell viability, decreasing the lactate dehydrogenase (LDH) release and inhibiting fibrotic factor expression. Moreover, in obstructed kidneys and HK-2 cells, AKBA markedly down-regulated the expression of TGFß-RI, TGFß-RII, phosphorylated-Smad2/3 (p-Smad2/3) and Smad4 in a dose-dependent fashion while up-regulated the expression of Klotho and Smad7 in the same manner. In addition, the effects of AKBA on the Klotho/TGF-ß/Smad signalling were reversed by transfecting with siRNA-Klotho in HK-2 cells. In conclusion, our findings provide evidence that AKBA can effectively protect kidney against interstitial fibrosis, and this renoprotective effect involves the Klotho/TGF-ß/Smad signalling pathway. Therefore, AKBA could be considered as a promising candidate drug for renal interstitial fibrosis.


Subject(s)
Fibrosis/drug therapy , Glucuronidase/genetics , Kidney Diseases/drug therapy , Triterpenes/administration & dosage , Animals , Boswellia/chemistry , Fibrosis/genetics , Fibrosis/pathology , Gene Expression Regulation/drug effects , Humans , Kidney/drug effects , Kidney/pathology , Kidney Diseases/genetics , Kidney Diseases/pathology , Klotho Proteins , Mice , RNA, Small Interfering/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Signal Transduction/drug effects , Smad4 Protein/genetics , Transforming Growth Factor beta1/genetics , Triterpenes/chemistry , Ureteral Obstruction/drug therapy , Ureteral Obstruction/genetics , Ureteral Obstruction/pathology
14.
J Cell Mol Med ; 22(3): 1383-1391, 2018 03.
Article in English | MEDLINE | ID: mdl-29314610

ABSTRACT

Epithelial-mesenchymal transition (EMT) is a pathological process that occurs in a variety of diseases, including organ fibrosis. Twist1, a basic helix-loop-helix transcription factor, is involved in EMT and plays significant roles in various fibrotic diseases. Suppression of the EMT process represents a promising approach for the treatment of fibrotic diseases. In this review, we discuss the roles and the underlying molecular mechanisms of Twist1 in fibrotic diseases, including those affecting kidney, lung, skin, oral submucosa and other tissues. We aim at providing new insight into the pathogenesis of various fibrotic diseases and facilitating the development of novel diagnostic and therapeutic methods for their treatment.


Subject(s)
Hypoxia/genetics , Kidney/metabolism , Lung/metabolism , Nuclear Proteins/genetics , Pulmonary Fibrosis/genetics , Skin/metabolism , Twist-Related Protein 1/genetics , Epithelial-Mesenchymal Transition/genetics , Fibrosis , Gene Expression Regulation , Humans , Hypoxia/metabolism , Hypoxia/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/pathology , Lung/pathology , Nuclear Proteins/metabolism , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/pathology , Signal Transduction , Skin/pathology , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism , Twist-Related Protein 1/metabolism
15.
Mol Med Rep ; 17(3): 4440-4448, 2018 03.
Article in English | MEDLINE | ID: mdl-29328390

ABSTRACT

Hypertensive nephrosclerosis (HNS) is a major risk factor for end-stage renal disease. However, the underlying pathogenesis of HNS remains to be fully determined. The gene expression profile of GSE20602, which consists of 14 glomeruli samples from patients with HNS and 4 normal glomeruli control samples, was obtained from the Gene Expression Omnibus database. Gene ontology (GO) and pathway enrichment analyses were performed in order to investigate the functions and pathways of differentially expressed genes (DEGs). Pathway relation and co­expression networks were constructed in order to identify key genes and signaling pathways involved in HNS. In total, 483 DEGs were identified to be associated with HNS, including 302 upregulated genes and 181 downregulated genes. Furthermore, GO analysis revealed that DEGs were significantly enriched in the small molecule metabolic process. In addition, pathway analysis also revealed that DEGs were predominantly involved in metabolic pathways. The tricarboxylic acid (TCA) cycle was identified as the hub pathway in the pathway relation network, whereas the sorbitol dehydrogenase (SORD) and cubulin (CUBN) genes were revealed to be the hub genes in the co­expression network. The present study revealed that the SORD, CUBN and albumin genes as well as the TCA cycle and metabolic pathways are involved in the pathogenesis of HNS. The results of the present study may contribute to the determination of the molecular mechanisms underlying HNS, and provide insight into the exploration of novel targets for the diagnosis and treatment of HNS.


Subject(s)
Computational Biology , Hypertension, Renal/pathology , Nephritis/pathology , Aged , Citric Acid Cycle/genetics , Down-Regulation , Female , Gene Regulatory Networks , Glomerular Filtration Rate , Humans , Hypertension, Renal/genetics , Hypertension, Renal/metabolism , Male , Middle Aged , Nephritis/genetics , Nephritis/metabolism , Signal Transduction/genetics , Transcriptome , Up-Regulation
16.
Biochem Biophys Res Commun ; 495(3): 2324-2330, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29277613

ABSTRACT

The epithelial-to-mesenchymal transition (EMT) induced by chronic hypoxia is one of the critical causes of renal fibrosis. Previous work reported that the transcription factors Twist plays an important role in hypoxia-induced EMT and renal fibrosis. Recent evidence indicates that miR-214 was regulated by Twist in many fibrotic diseases, but their role in hypoxia-induced EMT and renal fibrosis remains unknown. Here, we found that hypoxia significantly upregulated the expression of miR-214-3p in HK-2 cells, unilateral ureteral obstruction (UUO) nephropathy and patients with chronic kidney disease. Knockdown of miR-214-3p reversed the EMT of renal tubular epithelial cells (TECs) and alleviated fibrosis in the UUO mouse in vivo, while the overexpression of miR-214-3p promoted EMT phenotype and expression of fibrotic factors in TECs under hypoxic condition. In addition, Twist was also observed increased gradually with the prolongation of hypoxia, and it positively correlated with the expression of miR-214-3p in HK-2 cells transfected with Twist-overexpression or Twist-siRNA plasmid. Moreover, miR-214-3p negatively regulated the expression of epithelial cadherin (E-cadherin) by binding the E-cadherin 3' UTR under hypoxic condition. Overall, hypoxia-induced activation of Twist/miR-214/E-cadherin axis is involved in the EMT of TECs, and anti-miR-214 may be an attractive strategy to ameliorate the progression of renal fibrosis.


Subject(s)
Cadherins/metabolism , Cell Hypoxia , Epithelial-Mesenchymal Transition , Kidney Tubules/metabolism , Kidney Tubules/pathology , MicroRNAs/metabolism , Twist-Related Protein 1/metabolism , Animals , Cell Line , Fibrosis/metabolism , Fibrosis/pathology , Humans , Male , Metabolic Networks and Pathways , Mice , Mice, Inbred C57BL
17.
Clin Nephrol ; 89(2): 93-103, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29092736

ABSTRACT

BACKGROUND: Our previous studies indicated that Bmi-1 plays an important role in hypoxia-induced tubular epithelial-mesenchymal transition and the development of kidney fibrosis in cellular and animal models. However, circulating Bmi-1 levels in human chronic kidney disease (CKD) and their relation to progression remains unknown. MATERIALS AND METHODS: We conducted a post-hoc analysis of a prospective cohort study. The blood samples and clinical data of 230 patients with glomerular CKD and 67 healthy adults were prospectively collected between January 2010 and June 2012. Serum Bmi-1 was measured using enzyme-linked immunosorbent assay (ELISA). RESULTS: CKD patients had significantly higher serum Bmi-1 concentrations than the healthy controls (496.4 (363.1 - 675.4) pg/mL compared with 257.3 (235.4 - 303.8) pg/mL, p < 0.001). Serum Bmi-1 level inversely correlated with the estimated glomerular filtration rate (eGFR) (r = -0.346, p < 0.001). In addition, positive correlations were identified between serum Bmi-1 levels and serum creatinine, blood urea nitrogen, cystatin C concentration, and the severity of tubulointerstitial fibrosis (r = 0.248, p < 0.001; r = 0.245, p < 0.001; r = 0.273, p < 0.001; r = 0.536, p < 0.001, respectively). Kaplan-Meier survival curves showed that a higher serum Bmi-1 level was associated with a shorter duration of renal survival. Cox multivariate analyses further demonstrated that serum Bmi-1 concentration was an independent prognostic factor for CKD patients (HR = 6.48, p < 0.001). CONCLUSION: Our study showed that high circulating Bmi-1 levels were associated with adverse kidney disease outcome, suggesting that Bmi-1 is a novel biomarker for glomerular CKD progression. More data from larger longitudinal studies are required to validate our findings.
.


Subject(s)
Polycomb Repressive Complex 1/blood , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/pathology , Adult , Aged , Biomarkers/blood , Blood Urea Nitrogen , Cohort Studies , Creatinine/blood , Cystatin C/blood , Disease Progression , Female , Glomerular Filtration Rate , Humans , Kaplan-Meier Estimate , Kidney Function Tests , Male , Middle Aged , Multivariate Analysis , Renal Insufficiency, Chronic/mortality
18.
Cancer Cell Int ; 17: 87, 2017.
Article in English | MEDLINE | ID: mdl-29033691

ABSTRACT

BACKGROUND: Glioblastoma is the most common and aggressive brain tumor associated with a poor prognosis. Plant homeodomain finger protein 20 (PHF20) is highly expressed in primary human gliomas and its expression is associated with tumor grade. However, the molecular mechanism by which PHF20 regulates glioblastoma remains poorly understood. METHODS: Genome wide gene expression analysis was performed to identify differentially expressed genes (DEGs) in U87 cells with PHF20 gene knockdown. Gene ontology (GO) and pathway enrichment analyses were performed to investigate the functions and pathways of DEGs. Pathway-net and signal-net analyses were conducted to identify the key genes and pathways related to PHF20. RESULTS: Expression of 540 genes, including FEN1 and CCL3, were significantly altered upon PHF20 gene silencing. GO analysis results showed that DEGs were significantly enriched in small molecule metabolic and apoptotic processes. Pathway analysis indicated that DEGs were mainly involved in cancer and metabolic pathways. The MAPK, apoptosis and p53 signaling pathways were identified as the hub pathways in the pathway network, while PLCB1, NRAS and PIK3 s were hub genes in the signaling network. CONCLUSIONS: Our findings indicated that PHF20 is a pivotal upstream regulator. It affects the occurrence and development of glioma by regulating a series of tumor-related genes, such as FEN1, CCL3, PLCB1, NRAS and PIK3s, and activation of apoptosis signaling pathways. Therefore, PHF20 might be a novel biomarker for early diagnosis, and a potential target for glioblastoma therapies.

19.
J Cell Mol Med ; 21(7): 1248-1259, 2017 07.
Article in English | MEDLINE | ID: mdl-28097825

ABSTRACT

Renal fibrosis is the common pathological hallmark of progressive chronic kidney disease (CKD) with diverse aetiologies. Recent researches have highlighted the critical role of hypoxia during the development of renal fibrosis as a final common pathway in end-stage kidney disease (ESKD), which joints the scientist's attention recently to exploit the molecular mechanism underlying hypoxia-induced renal fibrogenesis. The scaring formation is a multilayered cellular response and involves the regulation of multiple hypoxia-inducible signalling pathways and complex interactive networks. Therefore, this review will focus on the signalling pathways involved in hypoxia-induced pathogenesis of interstitial fibrosis, including pathways mediated by HIF, TGF-ß, Notch, PKC/ERK, PI3K/Akt, NF-κB, Ang II/ROS and microRNAs. Roles of molecules such as IL-6, IL-18, KIM-1 and ADO are also reviewed. A comprehensive understanding of the roles that these hypoxia-responsive signalling pathways and molecules play in the context of renal fibrosis will provide a foundation towards revealing the underlying mechanisms of progression of CKD and identifying novel therapeutic targets. In the future, promising new effective therapy against hypoxic effects may be successfully translated into the clinic to alleviate renal fibrosis and inhibit the progression of CKD.


Subject(s)
Cell Hypoxia/genetics , Fibrosis/genetics , Kidney Failure, Chronic/genetics , Kidney/pathology , Fibrosis/pathology , Humans , Kidney Failure, Chronic/pathology , MicroRNAs/genetics , NF-kappa B/genetics , Receptors, Notch/genetics , Signal Transduction/genetics , Transforming Growth Factor beta/genetics
20.
Oncotarget ; 8(67): 111608-111622, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29340078

ABSTRACT

Ischemic stroke is a cerebrovascular thrombotic disease with high morbidity and mortality. Qi deficiency blood stasis (QDBS) and Yin deficiency blood stasis (YDBS) are the two major subtypes of ischemic stroke according to the theories of traditional Chinese medicine. This study was conducted to distinguish these two syndromes at transcriptomics level and explore the underlying mechanisms. Male rats were randomly divided into three groups: sham group, QDBS/MCAO group and YDBS/MCAO group. Morphological changes were assessed after 24 h of reperfusion. Microarray analysis with circulating mRNA was then performed to identify differential gene expression profile, gene ontology and pathway enrichment analyses were carried out to predict the gene function, gene co-expression and pathway networks were constructed to identify the hub biomarkers, which were further validated by western blotting and Tunel staining analysis. Three subsets of dysregulated genes were acquired, including 445 QDBS-specific genes, 490 YDBS-specific genes and 1676 blood stasis common genes. Our work reveals for the first time that T cell receptor, MAPK and apoptosis pathway were identified as the hub pathways based on the pathway networks, while Nfκb1, Egfr and Casp3 were recognized as the hub genes by co-expression networks. This research helps contribute to a clearer understanding of the pathological characteristics of ischemic stroke with QDBS and YDBS syndrome, the proposed biomarkers might provide insight into the accurate diagnose and proper treatment for ischemic stroke with blood stasis syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...