Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 724: 138187, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32408447

ABSTRACT

Chlorophenols (CPs) are important pollutants detected frequently in the environment. This study intended to detect the inhibitory effects of fourteen CPs (2-CP, 3-CP, 4-CP, 4C2AP, 4C3MP, 2.4-DCP, 2.3.4-TCP, 2.4.5-TCP, 2.4.6-TCP, 3.4.5-TCP, 2.3.4.5-TECP, 2.3.4.6-TECP, 2.3.5.6-TECP and PCP) towards human liver cytochrome P450 3A4 (CYP3A4). Throughout the tests, testosterone was used as the probe substrate and CPs were used as inhibitors. A series of experiments (enzyme activity assays, preliminary screening tests, inhibition kinetics determination) were conducted to determine the inhibition of CPs towards human liver CYP3A4. CPs with the inhibitory effect >80% were selected for the inhibition evaluation in liver microsomes from different animal species (monkey, rat, dog, pig). The results showed that 2.3.4-TCP, 3.4.5-TCP, and 2.3.4.5-TECP inhibited the activities of CYP3A4 by 80.3%, 93.4%, 91.6%, respectively. Inhibition kinetics type were non-competitive and inhibition kinetics constant (Ki) values were 26.4 µM, 13.5 µM, and 8.8 µM for the inhibition of 2.3.4-TCP, 3.4.5-TCP, and 2.3.4.5-TECP towards human CYP3A4, respectively. Inhibition kinetics type was competitive and Ki value was 4.9 µM for the inhibition of 2.3.4-TCP towards CYP3A4 in Monkey liver microsomes (MyLMs). Inhibition kinetic types were non-competitive and Ki values were 8.1 µM and 28.7 µM for the inhibition of 3.4.5-TCP and 2.3.4.5-TECP towards CYP3A4 in MyLMs. Inhibition kinetic types were non-competitive and Ki values were 13.8 µM, 0.6 µM, and 6.1 µM for the inhibition of 2.3.4-TCP, 3.4.5-TCP, and 2.3.4.5-TECP towards CYP3A4 in Dog liver microsomes (DLMs), respectively. By comparing Ki values and inhibition kinetic types, the dog was the most suitable model to assess the inhibition of 2.3.4-TCP and 2.3.4.5-TECP towards CYP3A4, and monkey was the most suitable model to assess the inhibition of 3.4.5-TCP towards CYP3A4. In conclusion, our recent study on the inhibition of CPs towards CYP3A4 and species differences was important for further toxicological studies of CPs in human bodies.


Subject(s)
Chlorophenols , Cytochrome P-450 Enzyme Inhibitors , Animals , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Dogs , Humans , Microsomes, Liver , Rats , Swine
2.
Xenobiotica ; 49(10): 1158-1163, 2019 Oct.
Article in English | MEDLINE | ID: mdl-30484368

ABSTRACT

Parthenolide (PTL) and micheliolide (MCL) are sesquiterpene lactones with similar structures, and both of them have been reported to exhibit multiple biochemical and pharmacological activities. This study aims to investigate the inhibition of these two compounds on the activity of UDP-glucuronosyltransferases (UGTs). In vitro incubation mixture for recombinant UGTs-catalyzed glucuronidation metabolism of 4-methylumbelliferone (4-MU) was utilized to investigate the inhibition potential. Inhibition kinetics (including inhibition type and parameters) were determined, and in silico docking was employed to elucidate the inhibition difference between PTL and MCL on UGT1A1. MCL showed no inhibition toward all the UGT isoforms, and PTL showed strong inhibition toward UGT1A1. The half-maximal inhibitory concentration (IC50) of PTL on the activity of UGT1A1 was determined to be 64.4 µM. Inhibition kinetics determination showed that PTL exerted noncompetitive inhibition toward UGT1A1, and the inhibition kinetic constant (Ki) was determined to be 12.1 µM. In silico docking method has been employed to show that hydrogen bonds between PTL and the activity cavity of UGT1A1 contributed to the stronger inhibition of PTL on the activity of UGT1A1 than MCL. In conclusion, PTL can more easily induce drug-drug interaction (DDI) with clinical drugs mainly undergoing UGT1A1-catalyzed glucuronidation.


Subject(s)
Enzyme Inhibitors , Glucuronosyltransferase/antagonists & inhibitors , Glucuronosyltransferase/chemistry , Sesquiterpenes, Guaiane , Sesquiterpenes , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacokinetics , Sesquiterpenes/pharmacology , Sesquiterpenes, Guaiane/chemistry , Sesquiterpenes, Guaiane/pharmacokinetics , Sesquiterpenes, Guaiane/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...