Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
1.
J Colloid Interface Sci ; 671: 751-769, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38824748

ABSTRACT

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.

2.
Adv Sci (Weinh) ; : e2309889, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38838096

ABSTRACT

Spontaneous reversion from mild cognitive impairment (MCI) to normal cognition (NC) is little known. Based on the data of the Genetics of Personality Consortium and MCI participants from Alzheimer's Disease Neuroimaging Initiative, the authors investigate the effect of polygenic scores (PGS) for personality traits on the reversion of MCI to NC and its underlying neurobiology. PGS analysis reveals that PGS for conscientiousness (PGS-C) is a protective factor that supports the reversion from MCI to NC. Gene ontology enrichment analysis and tissue-specific enrichment analysis indicate that the protective effect of PGS-C may be attributed to affecting the glutamatergic synapses of subcortical structures, such as hippocampus, amygdala, nucleus accumbens, and caudate nucleus. The structural covariance network (SCN) analysis suggests that the left whole hippocampus and its subfields, and the left whole amygdala and its subnuclei show significantly stronger covariance with several high-cognition relevant brain regions in the MCI reverters compared to the stable MCI participants, which may help illustrate the underlying neural mechanism of the protective effect of PGS-C.

3.
Cereb Cortex ; 34(6)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38836287

ABSTRACT

Somatic mutations have been identified in 10% to 63% of focal cortical dysplasia type II samples, primarily linked to the mTOR pathway. When the causative genetic mutations are not identified, this opens the possibility of discovering new pathogenic genes or pathways that could be contributing to the condition. In our previous study, we identified a novel candidate pathogenic somatic variant of IRS-1 c.1791dupG in the brain tissue of a child with focal cortical dysplasia type II. This study further explored the variant's role in causing type II focal cortical dysplasia through in vitro overexpression in 293T and SH-SY5Y cells and in vivo evaluation via in utero electroporation in fetal brains, assessing effects on neuronal migration, morphology, and network integrity. It was found that the mutant IRS-1 variant led to hyperactivity of p-ERK, increased cell volume, and was predominantly associated with the MAPK signaling pathway. In vivo, the IRS-1 c.1791dupG variant induced abnormal neuron migration, cytomegaly, and network hyperexcitability. Notably, the ERK inhibitor GDC-0994, rather than the mTOR inhibitor rapamycin, effectively rescued the neuronal defects. This study directly highlighted the ERK signaling pathway's role in the pathogenesis of focal cortical dysplasia II and provided a new therapeutic target for cases of focal cortical dysplasia II that are not treatable by rapamycin analogs.


Subject(s)
Insulin Receptor Substrate Proteins , MAP Kinase Signaling System , Mutation , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , MAP Kinase Signaling System/genetics , Animals , Malformations of Cortical Development, Group I/genetics , Malformations of Cortical Development, Group I/metabolism , Brain/metabolism , Brain/pathology , Neurons/metabolism , Neurons/pathology , Cell Movement/genetics , HEK293 Cells , Female , Focal Cortical Dysplasia , Epilepsy
4.
Gigascience ; 132024 Jan 02.
Article in English | MEDLINE | ID: mdl-38837945

ABSTRACT

BACKGROUND: Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS: A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS: A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.


Subject(s)
Apiaceae , Coumarins , Genome, Plant , Telomere , Coumarins/metabolism , Apiaceae/genetics , Apiaceae/metabolism , Telomere/genetics , Telomere/metabolism , Evolution, Molecular , Phylogeny , Genomics/methods , Biosynthetic Pathways/genetics
5.
BMC Pregnancy Childbirth ; 24(1): 384, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778289

ABSTRACT

OBJECTIVE: We sought to investigate the impact of individualized exercise guidance during pregnancy on the incidence of macrosomia and the mediating effect of gestational weight gain (GWG). DESIGN: A prospective randomized clinical trial. SETTING: A Hospital in Xingtai District, Hebei Province. POPULATION: Older than 20 years of age, mid-pregnancy, and singleton pregnant women without contraindications to exercise during pregnancy. METHODS: A randomized clinical trial was conducted from December 2021 to September 2022 to compare the effects of standard prenatal care with individualized exercise guidance on the incidence of macrosomia. MAIN OUTCOME MEASURE: Incidence of macrosomia. RESULTS: In all, 312 singleton women were randomized into an intervention group (N = 162) or a control group (N = 150). Participants who received individualized exercise guidance had a significantly lower incidence of macrosomia (3.73% vs. 13.61%, P = 0.002) and infants large for gestational age (9.94% vs. 19.73%, P = 0.015). However, no differences were observed in the rate of preterm birth (1.86% vs. 3.40%, P = 0.397) or the average gestational age at birth (39.14 ± 1.51 vs. 38.69 ± 1.85, P = 0.258). Mediation analysis revealed that GWG mediated the effect of exercise on reducing the incidence of macrosomia. CONCLUSION: Individualized exercise guidance may be a preventive tool for macrosomia, and GWG mediates the effect of exercise on reducing the incidence of macrosomia. However, evidence does not show that exercise increases the rate of preterm birth or affects the average gestational age at birth. TRIAL REGISTRATION: The trial is registered at www.clinicaltrails.gov [registration number: NCT05760768; registration date: 08/03/2023 (retrospectively registered)].


Subject(s)
Exercise , Fetal Macrosomia , Gestational Weight Gain , Prenatal Care , Humans , Female , Fetal Macrosomia/prevention & control , Pregnancy , Adult , Prenatal Care/methods , Prospective Studies , Incidence , China/epidemiology , Infant, Newborn
6.
Plant Physiol Biochem ; 211: 108670, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703501

ABSTRACT

Plants would encounter various biotic and abiotic stresses during the growth and development. WRKY transcription factors (TFs) as plant-specific TFs, play an important role in responding to various adverse circumstances. Despite some advances were achieved in functional studies of WRKY TFs in tea plants, systematic analysis of the involvement of CsWRKY TFs when facing cold, salt, drought stresses and pathogen and insect attack was lacked. In present study, a total of 78 CsWRKY TFs were identified following the genomic and transcript databases. The expression patterns of CsWRKYs in various organs of tea plants and the expression profiles in response to biotic and abiotic stresses were investigated by examining representative RNA-seq data. Moreover, the effects of hormone treatments (SA and MeJA) on the transcription levels of WRKY TFs were also investigated. The phylogenetic tree of CsWRKY TFs from different species indicated the functional diversity of WRKY TFs was not closely related to their protein classification. Concurrently, CsWRKY70-2 TF was identified as a positive regulator in response to drought stress. This study provided solid and valuable information, helping us better understand the functional diversity of CsWRKY TFs, and laid the foundation for further research on the function of key WRKY genes in tea plants.


Subject(s)
Camellia sinensis , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Transcription Factors , Camellia sinensis/genetics , Camellia sinensis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant/drug effects , Droughts , Genome, Plant , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Oxylipins/pharmacology , Oxylipins/metabolism , Acetates/pharmacology
7.
Diabetes Metab Syndr Obes ; 17: 1911-1921, 2024.
Article in English | MEDLINE | ID: mdl-38711675

ABSTRACT

Purpose: To assess the impact of maternal pre-pregnancy body mass index (BMI) on longitudinal fetal growth, and the potential mediation effect of the maternal fasting plasma glucose in first trimester. Methods: In this retrospective cohort study, we collected pre-pregnancy BMI data and ultrasound measurements during pregnancy of 3879 singleton pregnant women who underwent antenatal examinations and delivered at Peking Union Medical College Hospital. Generalized estimation equations, linear regression, and logistic regression were used to examine the association between pre-pregnancy BMI with fetal growth and adverse neonatal outcomes. Mediation analyses were also used to examine the mediating role of maternal fasting plasma glucose (FPG) in first trimester. Results: A per 1 Kg/m² increase in pre-pregnancy BMI was associated with increase fetal body length Z-score (ß 0.010, 95% CI 0.001, 0.019) and fetal body weight (ß 0.017, 95% CI 0.008, 0.027). In mid pregnancy, pre-pregnancy BMI also correlated with an increase Z-score of fetal abdominal circumference, femur length (FL). Pre-pregnancy BMI was associated with an increased risk of large for gestational age and macrosomia. Mediation analysis indicated that the associations between pre-pregnancy BMI and fetal weight in mid and late pregnancy, and at birth were partially mediated by maternal FPG in first trimester (mediation proportion: 5.0%, 8.3%, 1.6%, respectively). Conclusion: Maternal pre-pregnancy BMI was associated with the longitudinal fetal growth, and the association was partly driven by maternal FPG in first trimester. The study emphasized the importance of identifying and managing mothers with higher pre-pregnancy BMI to prevent fetal overgrowth.

8.
Front Neurol ; 15: 1372168, 2024.
Article in English | MEDLINE | ID: mdl-38651098

ABSTRACT

Peripheral nerve injuries, caused by various reasons, often lead to severe sensory, motor, and autonomic dysfunction or permanent disability, posing a challenging problem in regenerative medicine. Autologous nerve transplantation has been the gold standard in traditional treatments but faces numerous limitations and risk factors, such as donor area denervation, increased surgical complications, and diameter or nerve bundle mismatches. The extracellular matrix (ECM) is a complex molecular network synthesized and released into the extracellular space by cells residing in tissues or organs. Its main components include collagen, proteoglycans/glycosaminoglycans, elastin, laminin, fibronectin, etc., providing structural and biochemical support to surrounding cells, crucial for cell survival and growth. Schwann cells, as the primary glial cells in the peripheral nervous system, play various important roles. Schwann cell transplantation is considered the gold standard in cell therapy for peripheral nerve injuries, making ECM derived from Schwann cells one of the most suitable biomaterials for peripheral nerve repair. To better understand the mechanisms of Schwann cells and the ECM in peripheral nerve regeneration and their optimal application, this review provides an overview of their roles in peripheral nerve regeneration.

9.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(3): 282-288, 2024 Mar 15.
Article in Chinese | MEDLINE | ID: mdl-38557381

ABSTRACT

OBJECTIVES: To investigate the effects of different concentrations of adapalene on the morphology and functions of neuroblastoma cell line SH-SY5Y, as well as its role in inducing cell differentiation and apoptosis. METHODS: SH-SY5Y cells were divided into control group, low concentration (0.1 µM and 1 µM) adapalene groups, and high concentration (10 µM) adapalene group. Time-lapse microscopy was used to observe the morphological changes of SH-SY5Y cells. Immunofluorescence staining was performed to detect the expression of neuronal specific marker ßIII-tubulin and mature neuronal marker neurofilament heavy polypeptide (NFH). Multi-electrode array was used to record the electrophysiological features of SH-SY5Y cells. Cell apoptosis was evaluated using a cell apoptosis detection kit. RESULTS: Low concentrations of adapalene promoted the formation of neurite outgrowth in SH-SY5Y cells, with the neurites interconnected to form a network. Spontaneous discharge activity was observed in SH-SY5Y cells treated with low concentrations of adapalene. Compared to the control group, the expression of ßIII-tubulin and NFH increased in the 1 µM adapalene group, while the level of cell apoptosis increased in the high concentration adapalene group (P<0.05). CONCLUSIONS: Low concentrations of adapalene can induce differentiation of SH-SY5Y cells into mature functional neurons, while high concentrations of adapalene can induce apoptosis in SH-SY5Y cells.


Subject(s)
Neuroblastoma , Tubulin , Humans , Neurons , Cell Differentiation , Apoptosis , Cell Line, Tumor
10.
Front Public Health ; 12: 1374522, 2024.
Article in English | MEDLINE | ID: mdl-38584914

ABSTRACT

Background: Mobile phone addiction has adverse influences on the physical and mental health of college students. However, few studies shed light on the effect of fear of missing out on mobile phone addiction and the underlying mechanisms among college students. Methods: To explore their associations, the present study used the Fear of Missing Out Scales (FoMOS), Loneliness Scale (USL-8), Mobile Phone Addiction Index Scale (MPAI), and Depression-Anxiety-Stress Questionnaire (DASS-21) to investigate 750 college students. Results: The results suggested that fear of missing out significantly positively predicted mobile phone addiction. This direct effect could be mediated by depression, and the indirect effect of fear of missing out on mobile phone addiction could be moderated by loneliness. Specifically, the indirect effect was stronger for students with high levels of loneliness. Conclusion: This study provides a theoretical basis for developing future interventions for mobile phone addiction in higher education students.


Subject(s)
Depression , Loneliness , Humans , Fear , Students , Technology Addiction
11.
BMC Pregnancy Childbirth ; 24(1): 158, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395822

ABSTRACT

BACKGROUND: This study presents CUPID, an advanced automated measurement software based on Artificial Intelligence (AI), designed to evaluate nine fetal biometric parameters in the mid-trimester. Our primary objective was to assess and compare the CUPID performance of experienced senior and junior radiologists. MATERIALS AND METHODS: This prospective cross-sectional study was conducted at Shenzhen University General Hospital between September 2022 and June 2023, and focused on mid-trimester fetuses. All ultrasound images of the six standard planes, that enabled the evaluation of nine biometric measurements, were included to compare the performance of CUPID through subjective and objective assessments. RESULTS: There were 642 fetuses with a mean (±SD) age of 22 ± 2.82 weeks at enrollment. In the subjective quality assessment, out of 642 images representing nine biometric measurements, 617-635 images (90.65-96.11%) of CUPID caliper placements were determined to be accurately placed and did not require any adjustments. Whereas, for the junior category, 447-691 images (69.63-92.06%) were determined to be accurately placed and did not require any adjustments. In the objective measurement indicators, across all nine biometric parameters and estimated fetal weight (EFW), the intra-class correlation coefficients (ICC) (0.843-0.990) and Pearson correlation coefficients (PCC) (0.765-0.978) between the senior radiologist and CUPID reflected good reliability compared with the ICC (0.306-0.937) and PCC (0.566-0.947) between the senior and junior radiologists. Additionally, the mean absolute error (MAE), percentage error (PE), and average error in days of gestation were lower between the senior and CUPID compared to the difference between the senior and junior radiologists. The specific differences are as follows: MAE (0.36-2.53 mm, 14.67 g) compared to (0.64- 8.13 mm, 38.05 g), PE (0.94-9.38%) compared to (1.58-16.04%), and average error in days (3.99-7.92 days) compared to (4.35-11.06 days). In the time-consuming task, CUPID only takes 0.05-0.07 s to measure nine biometric parameters, while senior and junior radiologists require 4.79-11.68 s and 4.95-13.44 s, respectively. CONCLUSIONS: CUPID has proven to be highly accurate and efficient software for automatically measuring fetal biometry, gestational age, and fetal weight, providing a precise and fast tool for assessing fetal growth and development.


Subject(s)
Artificial Intelligence , Fetal Weight , Pregnancy , Female , Humans , Infant , Cross-Sectional Studies , Prospective Studies , Reproducibility of Results , Ultrasonography, Prenatal/methods , Fetus/diagnostic imaging , Fetal Development , Gestational Age , Software , Biometry
12.
Dalton Trans ; 53(10): 4662-4670, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38358364

ABSTRACT

In order to reduce the high polarization caused by the hysteresis effect of O2 diffusion and boost the power density of oxygen cathodes under a transient heavy load, an Al-MOF-derived porous carbon-modified Pt/C catalyst is proposed as a new capacitive ORR catalyst to construct super fuel cells (SFCs) via an ORR + EDLC dual-discharge parallel process. Herein, a capacitive porous carbon material (BTCC-2) with a large specific surface area (SSA) and high graphitization was synthesized via one-step carbonization of Al-MOFs (Al-BTC). After compounding BTCC-2 with commercial Pt/C catalysts, electrochemical tests were performed and revealed that the composite with 40% BTCC-2 provided the highest transient discharge performance. Moreover, the composite had a higher onset potential and limiting current density (5.236 mA cm-2) than Pt/C and a half-wave potential (0.833 V) comparable to that of Pt/C. The abundant pore structure and large surface of BTCC-2 greatly increased the interaction between oxygen and the catalyst surface. Besides, the contained BTCC-2 serve as a significant power bank to remarkably buffer and relieve the rapidly decreasing output voltage under an instant heavy load owing to the oxygen deficiencies in a Zn-air battery through the ORR + EDLC dual-parallel-discharge process. The proposed SFC design has potential as a universal method to solve the sluggish ORR process and provide high transient power density for fuel cell-driven vehicles.

13.
Neuroimage ; 289: 120551, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382862

ABSTRACT

It has been revealed that abnormal voxel-mirrored homotopic connectivity (VMHC) is present in patients with schizophrenia, yet there are inconsistencies in the relevant findings. Moreover, little is known about their association with brain gene expression profiles. In this study, transcription-neuroimaging association analyses using gene expression data from Allen Human Brain Atlas and case-control VMHC differences from both the discovery (meta-analysis, including 9 studies with a total of 386 patients and 357 controls) and replication (separate group-level comparisons within two datasets, including a total of 258 patients and 287 controls) phases were performed to identify genes associated with VMHC alterations. Enrichment analyses were conducted to characterize the biological functions and specific expression of identified genes, and Neurosynth decoding analysis was performed to examine the correlation between cognitive-related processes and VMHC alterations in schizophrenia. In the discovery and replication phases, patients with schizophrenia exhibited consistent VMHC changes compared to controls, which were correlated with a series of cognitive-related processes; meta-regression analysis revealed that illness duration was negatively correlated with VMHC abnormalities in the cerebellum and postcentral/precentral gyrus. The abnormal VMHC patterns were stably correlated with 1287 genes enriched for fundamental biological processes like regulation of cell communication, nervous system development, and cell communication. In addition, these genes were overexpressed in astrocytes and immune cells, enriched in extensive cortical regions and wide developmental time windows. The present findings may contribute to a more comprehensive understanding of the molecular mechanisms underlying VMHC alterations in patients with schizophrenia.


Subject(s)
Schizophrenia , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Magnetic Resonance Imaging , Brain , Brain Mapping , Gene Expression
14.
Dalton Trans ; 53(8): 3654-3665, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38289280

ABSTRACT

Two new metal-organic frameworks (MOFs), namely, {[Zn(HL)(bpea)]·DMF}n (Zn-MOF-1) and {[Co(HL)(bpea)]·DMF}n (Co-MOF-2) (H3L = 3-(3,5-dicarboxybenzyloxy)benzoic acid, bpea = 1,2-di(pyridyl)ethane), were obtained by the reaction of H3L and N-containing ligand bpea with Zn(NO3)2·6H2O and Co(NO3)2·6H2O, respectively. The isomorphic Zn-MOF-1 and Co-MOF-2 featured a 3D penetrating framework with different stabilities, luminescence, and catalytic properties. Luminescence measurement indicated that Zn-MOF-1 could be used to detect Al3+ through a turn-on effect with a detection limit of 0.42 µM. The sensing mechanism experiments showed that the enhanced luminescence of Zn-MOF-1 toward Al3+ may be due to the weak interaction between Al3+ and Zn-MOF-1 and the absorbance-caused enhancement (ACE) mechanism. Meanwhile, both Zn-MOF-1 and Co-MOF-2 showed interesting CO2 adsorption properties and could catalyze the cycloaddition of CO2 to epoxides resulting in 96 and 92% ideal products within 12 hours, respectively. They can be cycled up to 5 times without significant loss of catalytic efficiency.

15.
Clin Respir J ; 18(1): e13731, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38286745

ABSTRACT

BACKGROUND: The aim of the study is to observe the anti-inflammatory and antioxidative stress effects of metformin on bleomycin (BLM)-induced pulmonary fibrosis in mice. METHODS: Mice with BLM-induced pulmonary fibrosis were treated with pirfenidone, metformin, pirfenidone plus metformin and the NADPH oxidase 4 (NOX4) inhibitor diphenyleneiodonium chloride (DPI). Pathological changes and hydroxyproline (HPO) levels were examined in the lung tissue of mice with pulmonary fibrosis. Superoxide dismutase (SOD) activity and malonaldehyde (MDA) levels in lung tissue were determined. RESULTS: Compared with pirfenidone, pirfenidone plus metformin could reduce alveolar damage and collagen fibre deposition and alleviate BLM-induced pulmonary fibrosis. Lung HPO levels were significantly lower in the PFD + MET group than in the BLM group (p < 0.05). SOD levels in the lungs of mice were increased in the PFD + MET group than in the BLM group (p < 0.05). Metformin and pirfenidone plus metformin can reduce MDA levels (p < 0.05). Pirfenidone plus metformin could reduce HPO levels, increase SOD levels, and reduce MDA levels in the lungs of mice. There was a significant correlation between the HPO level and the Ashcroft score (r = 0.520, p < 0.001). CONCLUSION: Metformin enhanced the antifibrotic effects of pirfenidone on BLM-treated mice. Moreover, these findings provide an experimental basis for examining whether metformin can improve the antifibrotic effects of pirfenidone on patients with idiopathic pulmonary fibrosis (IPF). It has broad therapeutic prospects for patients with IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Metformin , Pyridones , Humans , Mice , Animals , Metformin/pharmacology , Metformin/therapeutic use , Lung/pathology , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Superoxide Dismutase/pharmacology , Mice, Inbred C57BL
16.
ACS Appl Mater Interfaces ; 16(3): 4181-4188, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194269

ABSTRACT

Precise control of charge carrier type and density of two-dimensional (2D) ambipolar semiconductors is the prerequisite for their applications in next-generation integrated circuits and electronic devices. Here, by fabricating a heterointerface between a 2D ambipolar semiconductor (hydrogenated germanene, GeH) and a ferroelectric substrate (PbMg1/3Nb2/3O3-PbTiO3, PMN-PT), fine-tuning of charge carrier type and density of GeH is achieved. Due to ambipolar properties, proper band gap, and high carrier mobility of GeH, by applying the opposite local bias (±8 V), a lateral polarization in GeH is constructed with a change of work function by 0.6 eV. Besides, the built-in polarization in GeH nanoflake could promote the separation of photoexcited electron-hole pairs, which lead to 4 times enhancement of the photoconductivity after poling by 200 V. In addition, a gradient regulation of the work function of GeH from 4.94 to 5.21 eV by adjusting the local substrate polarization is demonstrated, which could be used for data storage at the micrometer size by forming p-n homojunctions. This work of constructing such heterointerfaces provides a pathway for applying 2D ambipolar semiconductors in nonvolatile memory devices, photoelectronic devices, and next-generation integrated circuit.

17.
Eur Radiol ; 34(1): 28-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37532899

ABSTRACT

OBJECTIVES: To assess image quality and liver metastasis detection of reduced-dose dual-energy CT (DECT) with deep learning image reconstruction (DLIR) compared to standard-dose single-energy CT (SECT) with DLIR or iterative reconstruction (IR). METHODS: In this prospective study, two groups of 40 participants each underwent abdominal contrast-enhanced scans with full-dose SECT (120-kVp images, DLIR and IR algorithms) or reduced-dose DECT (40- to 60-keV virtual monochromatic images [VMIs], DLIR algorithm), with 122 and 106 metastases, respectively. Groups were matched by age, sex ratio, body mass index, and cross-sectional area. Noise power spectrum of liver images and task-based transfer function of metastases were calculated to assess the noise texture and low-contrast resolution. The image noise, signal-to-noise ratios (SNR) of liver and portal vein, liver-to-lesion contrast-to-noise ratio (LLR), lesion conspicuity, lesion detection rate, and the subjective image quality metrics were compared between groups on 1.25-mm reconstructed images. RESULTS: Compared to 120-kVp images with IR, 40- and 50-keV VMIs with DLIR showed similar noise texture and LLR, similar or higher image noise and low-contrast resolution, improved SNR and lesion conspicuity, and similar or better perceptual image quality. When compared to 120-kVp images with DLIR, 50-keV VMIs with DLIR had similar low-contrast resolution, SNR, LLR, lesion conspicuity, and perceptual image quality but lower frequency noise texture and higher image noise. For the detection of hepatic metastases, reduced-dose DECT by 34% maintained observer lesion detection rates. CONCLUSION: DECT assisted with DLIR enables a 34% dose reduction for detecting hepatic metastases while maintaining comparable perceptual image quality to full-dose SECT. CLINICAL RELEVANCE STATEMENT: Reduced-dose dual-energy CT with deep learning image reconstruction is as accurate as standard-dose single-energy CT for the detection of liver metastases and saves more than 30% of the radiation dose. KEY POINTS: • The 40- and 50-keV virtual monochromatic images (VMIs) with deep learning image reconstruction (DLIR) improved lesion conspicuity compared with 120-kVp images with iterative reconstruction while providing similar or better perceptual image quality. • The 50-keV VMIs with DLIR provided comparable perceptual image quality and lesion conspicuity to 120-kVp images with DLIR. • The reduction of radiation by 34% by DLIR in low-keV VMIs is clinically sufficient for detecting low-contrast hepatic metastases.


Subject(s)
Deep Learning , Liver Neoplasms , Humans , Prospective Studies , Liver Neoplasms/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Image Processing, Computer-Assisted/methods
18.
Eur Radiol ; 34(3): 1614-1623, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37650972

ABSTRACT

OBJECTIVE: This study aimed to evaluate the image quality and lesion conspicuity of the deep learning image reconstruction (DLIR) algorithm compared with standard image reconstruction algorithms on abdominal enhanced computed tomography (CT) scanning with a wide range of body mass indexes (BMIs). METHODS: A total of 112 participants who underwent contrast-enhanced abdominal CT scans were divided into three groups according to BMIs: the 80-kVp group (BMI ≤ 23.9 kg/m2), 100-kVp group (BMI 24-28.9 kg/m2), and 120-kVp group (BMI ≥ 29 kg/m2). All images were reconstructed using filtered back projection (FBP), adaptive statistical iterative reconstruction-V of 50% level (IR), and DLIR at low, medium, and high levels (DL, DM, and DH, respectively). Subjective noise, artifact, overall image quality, and low- and high-contrast hepatic lesion conspicuity were all graded on a 5-point scale. The CT attenuation value (in HU), image noise, and contrast-to-noise ratio (CNR) were quantified and compared. RESULTS: DM and DH improved the qualitative and quantitative parameters compared with FBP and IR for all three BMI groups. DH had the lowest image noise and highest CNR value, while DM had the highest subjective overall image quality and low- and high-contrast lesion conspicuity scores for the three BMI groups. Based on the FBP, the improvement in image quality and lesion conspicuity of DM and DH images was greater in the 80-kVp group than in the 100-kVp and 120-kVp groups. CONCLUSION: For all BMIs, DLIR improves both image quality and hepatic lesion conspicuity, of which DM would be the best choice to balance both. CLINICAL RELEVANCE STATEMENT: The study suggests that utilizing DLIR, particularly at the medium level, can significantly enhance image quality and lesion visibility on abdominal CT scans across a wide range of BMIs. KEY POINTS: • DLIR improved the image quality and lesion conspicuity across a wide range of BMIs. • DLIR at medium level had the highest subjective parameters and lesion conspicuity scores among all reconstruction levels. • On the basis of the FBP, the 80-kVp group had improved image quality and lesion conspicuity more than the 100-kVp and 120-kVp groups.


Subject(s)
Deep Learning , Humans , Body Mass Index , Tomography, X-Ray Computed/methods , Algorithms , Phantoms, Imaging , Radiographic Image Interpretation, Computer-Assisted/methods , Radiation Dosage , Image Processing, Computer-Assisted
19.
Eur Radiol ; 34(2): 1280-1291, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37589900

ABSTRACT

OBJECTIVES: To develop a CT-based radiomics model for preoperative prediction of lymph node (LN) metastasis in perihilar cholangiocarcinoma (pCCA). METHODS: The study enrolled consecutive pCCA patients from three independent Chinese medical centers. The Boruta algorithm was applied to build the radiomics signature for the primary tumor and LN. The k-means algorithm was employed to cluster the selected LNs based on the radiomics signature LN. Support vector machines were used to construct the prediction models. The diagnostic efficiency was measured by the area under the receiver operating characteristic curve (AUC). The optimal model was evaluated in terms of calibration, clinical usefulness, and prognostic value. RESULTS: A total of 214 patients were included in the study (mean age: 61.6 years ± 9.4; 130 male). The selected LNs were classified into two clusters, which were significantly correlated with LN metastasis in all cohorts (p < 0.001). The model incorporated the clinical risk factors, radiomics signature primary tumor, and the LN cluster obtained the best discrimination, with AUC values of 0.981 (95% CI: 0.962-1), 0.896 (95% CI: 0.810-0.982), and 0.865 (95% CI: 0.768-0.961) in the training, internal validation, and external validation cohorts, respectively. High-risk patients predicted by the optimal model had shorter overall survival than low-risk patients (median, 13.7 vs. 27.3 months, p < 0.001). CONCLUSIONS: The study proposed a radiomics model with good performance to predict LN metastasis in pCCA. As a noninvasive preoperative prediction tool, this model may help in patient risk stratification and personalized treatment. CLINICAL RELEVANCE STATEMENT: A CT-based radiomics model accurately predicts lymph node metastasis in perihilar cholangiocarcinoma patients. This noninvasive preoperative tool can aid in patient risk stratification and personalized treatment, potentially improving patient outcomes. KEY POINTS: • The radiomics model based on contrast-enhanced CT is a useful tool for preoperative prediction of lymph node metastasis in perihilar cholangiocarcinoma. • Radiomics features extracted from lymph nodes show great potential for predicting lymph node metastasis. • The study is the first to identify a lymph node phenotype with a high probability of metastasis based on radiomics.


Subject(s)
Bile Duct Neoplasms , Klatskin Tumor , Humans , Male , Middle Aged , Lymphatic Metastasis/pathology , Klatskin Tumor/diagnostic imaging , Klatskin Tumor/surgery , Radiomics , Retrospective Studies , Tomography, X-Ray Computed/methods , Lymph Nodes/pathology , Bile Duct Neoplasms/diagnostic imaging , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology
20.
Crit Rev Eukaryot Gene Expr ; 34(1): 27-39, 2024.
Article in English | MEDLINE | ID: mdl-37824390

ABSTRACT

There is a wide variety of cancer cells that can be linked to the presence of TPX2. However, there is not a lot of evidence regarding its role in the development and maintenance of clear cell renal cell carcinoma (ccRCC). In our study, bioinformatics analysis was performed to obtain differentially expressed mRNAs and miR-NAs in ccRCC. Survival curves predicted correlation of TPX2 expression with patient survival. The upstream regulatory miRNA of TPX2 was predicted to be miRNA-27b-3p through database, and dual luciferase assay verified the targeted relationship. qRT-PCR and Western blot were employed for examination of TPX2 mRNA and protein expression in ccRCC cells. Proliferation, invasion, migration and cell cycle were detected by CCK-8, colony formation, wound healing, Transwell, and flow cytometry assays. The results showed that TPX2 showed very high expression in ccRCC, and patients with higher TPX2 expression had shorter relative survival. Low miRNA-27b-3p expression was found in ccRCC. Knockdown of TPX2 or forced expression of miRNA-27b-3p in ccRCC cells inhibited cell proliferation, migration, invasion, and arrested cell division in G0/G1 phase. Dual luciferase reporter presented that miRNA-27b-3p targeted TPX2 to inhibit its expression. Rescue experiments demonstrated that the miRNA-27b-3p/ TPX2 axis affected the biological functions of ccRCC cells. Concurrent overexpression of miRNA-27b-3p and TPX2 inhibited the facilitating effect of TPX2 on ccRCC cell growth. The results revealed novel regulatory mechanisms involved in ccRCC progression, hoping that it may spark an insight for later discovery about the new therapeutic targets for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , MicroRNAs , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Luciferases , MicroRNAs/genetics , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...