Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Nanomedicine (Lond) ; 18(17): 1077-1094, 2023 07.
Article in English | MEDLINE | ID: mdl-37650546

ABSTRACT

Background: Combination therapy has attracted tremendous interest for its great potential in treating cancers. Materials & methods: Based on chitosan-coated silver nanotriangles, polyethylene glycol, AS1411 aptamer and doxorubicin, a multifunctional nanocomposite (AS1411-DOX-AgNTs) was constructed and characterized. Then the photothermal properties, ability to target breast cancer cells and anti-breast cancer effect of AS1411-DOX-AgNTs were evaluated. Results: AS1411-DOX-AgNTs were successfully fabricated and showed excellent photothermal conversion efficiency, breast cancer cell and tumor targeting ability. Compared with single treatments, the combination of AS1411-DOX-AgNTs with near-infrared irradiation possessed the strongest anti-breast cancer effect in vitro and in vivo. Conclusion: AS1411-DOX-AgNTs hold great potential in targeted DOX delivery and combined chemo-photothermal therapy for breast cancer.


This article focuses on nanomaterials, nanomedicine and photothermal therapy (PTT) to treat breast cancer. Nanomaterials refer to materials with at least one dimension in nanometer size (1­100 nm) or materials composed as basic units in a 3D space. Nanomedicine is the application of nanomaterials in medicine. Nanoparticles can deliver drugs to areas that are difficult for the drugs themselves to reach. PTT is a noninvasive tumor therapy that uses photothermal conversion agents to convert light energy into heat energy to kill tumor cells under the irradiation of external near-infrared (NIR) light. In recent years, combination therapy for cancers has drawn more and more attention. In the current study, we investigated the in vitro and in vivo anticancer effects of silver nanocomposites combined with chemotherapy and PTT. The prepared silver nanocomposites showed excellent physicochemical properties and possessed good anti-breast cancer efficacy combined with PTT and chemotherapy drug in vitro and in vivo. The results of this study demonstrated that these prepared silver nanocomposites had exceptional anti-breast cancer effects in combination with PTT and could be promising drug-loaded photothermal conversion agents.


Subject(s)
Aptamers, Nucleotide , Breast Neoplasms , Female , Humans , Doxorubicin/pharmacology , Photothermal Therapy , Silver
2.
J Mater Chem B ; 10(33): 6338-6350, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35930367

ABSTRACT

The issue of pervasively enhanced drug resistance of pancreatic cancer is fundamental to a better understanding of gemcitabine-based chemotherapy. Currently available treatment plans involving injectable therapeutics are mainly engineered to improve the performance and broaden their applications in the domain of biomedicine. Fixed-dose-rate infusion of free gemcitabine (Gem) has drawn appropriate attention for its potent anti-tumor efficacy against various solid tumors, whereas it remains a considerable challenge to extend its application and achieve better treatment. Here, we have prepared and demonstrated a long-acting delivery system using gemcitabine and injectable in situ hydrogel for the localized treatment of pancreatic cancer. The hydrogel was prepared using polysaccharide derivatives, oxidized-carboxymethylcellulose (OCMC) and carboxymethylchitosan (CMCS) at optimal ratios by a dopamine-functionalized method for the controlled release of Gem. In vitro drug release behaviors for up to a week indicated sustained drug release of the Gem delivery system. Moreover, desirable apoptosis promotion and apparent cellular proliferation inhibition associated with the drug depot have been found in vitro against BxPC-3 pancreatic cancer cells, bringing minimized side effects to systemic normal tissues. The current findings manifested that the release out of the localized delivery platform in a sustained pattern afforded a durable gemcitabine-based chemotherapy effect and inhibited tumor metastasis more persistently after intratumoral injection of the Gem@Gel system, thereby advancing the development of novel drug-loaded materials with properties not accessed previously.


Subject(s)
Hydrogels , Pancreatic Neoplasms , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Humans , Hydrogels/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Gemcitabine , Pancreatic Neoplasms
3.
Colloids Surf B Biointerfaces ; 211: 112330, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032851

ABSTRACT

Radiotherapy is one of the main treatment modalities for glioma, but the therapeutic efficacy is often limited by the radioresistance of tumor cells. The radiosensitization effects of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) on tumors have been confirmed by previous studies. To enhance the specific killing effect of irradiation on tumor cells, targeted modification of radiosensitizers is urgently needed. Herein, we developed polyethylene glycol (PEG)-coated Ag@Au core-shell nanoparticles (PSGNPs) modified with GMT8 aptamer (GSGNPs) and evaluated their radiosensitization effects on glioma cells through in vivo and in vitro experiments. Transmission electron microscope image showed that the prepared PSGNPs had a spherical core-shell structure with an average size of 11 nm. The ultraviolet-visible absorption spectra and Fourier transform infrared spectra displayed that GMT8 was successfully conjugated to PSGNPs. The results of dark-field imaging revealed that the targeting ability of GSGNPs to U87 glioma cells was much better than that to normal human microvascular endothelial cells. Additionally, it was also found that the endocytic pathways of GSGNPs mainly involved clathrin-mediated endocytosis and macropinocytosis. The sensitization enhancement ratio of GSGNPs was calculated to be 1.62, which was higher than that of PSGNPs. In vivo imaging results showed that GSGNPs exhibited good tumor targeting and retention capabilities, and the fluorescence intensity ratio of Cy5-GSGNPs to Cy5-PSGNPs reached a peak at 4 h after injection. More importantly, the median survival time of mice bearing U87 glioma was significantly prolonged after intravenous administration of GSGNPs combined with radiotherapy. This work demonstrated that GSGNPs could be used as an effective nano-radiosensitizer for targeted radiotherapy of glioma.


Subject(s)
Glioma , Metal Nanoparticles , Animals , Cell Line, Tumor , Endothelial Cells , Glioma/drug therapy , Glioma/pathology , Gold/chemistry , Metal Nanoparticles/chemistry , Mice , Polyethylene Glycols , Silver/chemistry
4.
Nanomedicine (Lond) ; 17(5): 289-302, 2022 02.
Article in English | MEDLINE | ID: mdl-35060397

ABSTRACT

Aim: To determine the optimal AS1411 density on polyethylene glycol (PEG)ylated silver nanotriangles (PNTs) for targeting breast cancer cells. Methods: PNTs modified with different AS1411 densities (ANTs) were constructed, characterized and evaluated for their targeting properties in breast cancer cells and a mouse model of breast cancer. Results: AS1411 was successfully conjugated to PNTs. The accumulation and cellular uptake of 10-ANTs were the highest. 10-ANTs plus near-IR laser irradiation displayed the greatest inhibitory effect on cell viability. However, 5-ANTs had the highest accumulation in tumor tissues. When combined with NIR laser, 5-ANTs exhibited the best in vivo photothermal therapy effect. Conclusion: The optimal AS1411 densities at the cellular and animal levels were 10% and 5%, respectively.


Subject(s)
Aptamers, Nucleotide , Silver , Animals , Aptamers, Nucleotide/pharmacology , Cell Line, Tumor , Humans , Mice , Oligodeoxyribonucleotides , Polyethylene Glycols , Silver/pharmacology
5.
Nanotechnology ; 33(7)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34749347

ABSTRACT

The combination of multiple therapies has been proved to be more effective than a single therapy for many cancers. This study aimed to investigate the synergistic antibreast cancer effect of doxorubicin-loaded silver nanotriangles (DOX-AgNTs) combined with near-infrared (NIR) irradiation and explore the underlying mechanism. AgNTs were prepared by a chemical method and DOX was loaded via electrostatic adsorption. Characterization was performed by transmission electron microscopy, ultraviolet-visible spectroscopy and dynamic light scattering. The viability of MDA-MB-231 cells was detected by using MTT assay to evaluate the synergistic anticancer effect of DOX-AgNTs combined with NIR irradiation. The intracellular reactive oxygen species (ROS) level and cell apoptosis were analyzed by flow cytometry. Mitochondrial membrane potential (MMP) was measured with fluorescence microscopy. The mechanism was further investigated with ROS scavenger N-acetylcysteine and specific inhibitors of extracellular signal-regulated kinase 1/2 (ERK1/2), C-jun N-terminal kinase and p38 pathways. Characterization results revealed that the prepared AgNTs were mostly triangular and the mean edge length was about 126 nm. The combination of DOX-AgNTs and NIR exhibited a superior synergistic anticancer effect over single DOX-AgNTs or photothermal therapy (PTT). N-acetylcysteine and ERK1/2 inhibitor U0126 were found to significantly rescue the decreased cell viability, declined MMP and increased apoptosis induced by the combined treatment. Our results suggested that DOX-AgNTs combined with PTT performed a synergistic antibreast cancer effect. The synergy might be closely associated with the excessive production of ROS, changed MMP and the activation of ERK1/2 signaling pathway. These findings might provide a new perspective for the development of breast cancer treatments with excellent efficacy.


Subject(s)
Antineoplastic Agents , Doxorubicin , Metal Nanoparticles/chemistry , Photothermal Therapy , Silver , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/chemistry , Doxorubicin/pharmacokinetics , Doxorubicin/pharmacology , Drug Synergism , Female , Humans , MAP Kinase Signaling System/drug effects , Nanoparticle Drug Delivery System , Reactive Oxygen Species/metabolism , Silver/chemistry , Silver/pharmacology
6.
Nanoscale ; 13(47): 19973-19984, 2021 Dec 13.
Article in English | MEDLINE | ID: mdl-34825684

ABSTRACT

The distribution of surface charge and potential of cell membrane plays an indispensable role in cellular activities. However, probing surface charge of live cells under physiological conditions, until recently, remains an arduous challenge owing to the lack of effective methods. Scanning ion conductance microscopy (SICM) is an emerging imaging technique for imaging a live cell membrane in its native state. Here, we introduce a simple SICM based imaging technique to effectively map the surface charge contrast distribution of soft substrates including cell membranes by utilizing the higher surface charge sensitivity of the ionic current when the nanopipette tip is close to the substrate with a relatively high current change. This technique was assessed on charged model substrates made of polydimethylsiloxane, and the surface charge sensitivity of ionic current change was supported by finite element method simulations. With this method, we can distinguish the surface charge difference between the cell membrane and the supporting collagen matrix. We also observed the surface charge change induced by the small membrane damage after 1% dimethyl sulfoxide (DMSO) treatment. This new SICM technique provides opportunities to study interfacial and cell membrane processes with high spatial resolution.


Subject(s)
Microscopy , Cell Membrane , Ions , Radionuclide Imaging
7.
Nanomedicine (Lond) ; 16(28): 2503-2519, 2021 12.
Article in English | MEDLINE | ID: mdl-34812051

ABSTRACT

Aim: This study aimed to construct AS1411 and EpDT3-conjugated PEGylated silver nanotriangles (AENTs) and assess their ability to target breast cancer and cancer stem cells, as well as the antitumor and antimetastatic effects of AENT-mediated photothermal therapy. Materials & methods: AENTs were constructed and characterized. The targeting properties, as well as antitumor and antimetastatic activities, were evaluated in MDA-MB-231 breast cancer cells, cancer stem cells and breast cancer-bearing mice. Results: AENTs displayed excellent targeting property to breast cancer cells and cancer stem cells. AENT-mediated photothermal therapy greatly inhibited (>45%) the migration and invasion of breast cancer cells, as well as tumor growth and lung metastasis in the mice. Conclusion: AENT-mediated photothermal therapy might be an effective strategy for the treatment of breast cancer.


Subject(s)
Breast Neoplasms , Silver , Animals , Aptamers, Nucleotide , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Humans , Mice , Neoplastic Stem Cells/pathology , Oligodeoxyribonucleotides , Photothermal Therapy
8.
Int J Nanomedicine ; 16: 7123-7135, 2021.
Article in English | MEDLINE | ID: mdl-34712045

ABSTRACT

BACKGROUND: Inducing the immunogenic cell death of tumour cells can mediate the occurrence of antitumour immune responses and make the therapeutic effect more significant. Therefore, the development of treatments that can induce ICD to destroy tumour cells most effectively is promising. Previously, a new type of pH-sensitive polymersome was designed for the treatment of glioblastoma which represents a promising nanoplatform for future translational research in glioblastoma therapy. In this study, the aim of this work was to analyse whether chemoradiotherapy of the novel pH-sensitive cargo-loaded polymersomes can induce ICD. METHODS: Cell death in U87-MG and G422 cells was induced by Au-DOX@PO-ANG, and cell death was analysed by CCK-8 and flow cytometry. The release of CRT was determined by using laser scanning confocal microscopy and flow cytometry. ELISA kits were used to detect the release of HMGB1 and ATP. The dying cancer cells treated with different treatments were cocultured with bone-marrow-derived dendritic cells (BMDCs), and then flow cytometry was used to determine the maturation rate of BMDCs (CD11c+CD86+CD80+) to analyse the in vitro immunogenicity. Tumour vaccination experiments were used to evaluate the ability of Au-DOX@PO-ANG to induce ICD in vivo. RESULTS: We determined the optimal treatment strategy to evaluate the ability of chemotherapy combined with radiotherapy to induce ICD and dying cancer cells induced by Au-DOX@PO-ANG+RT could induce calreticulin eversion to the cell membrane, promote the release of HMGB1 and ATP, and induce the maturation of BMDCs. Using dying cancer cells induced by Au-DOX@PO-ANG+RT, we demonstrate the efficient vaccination potential of ICD in vivo. CONCLUSION: These results identify Au-DOX@PO-ANG as a novel immunogenic cell death inducer in vitro and in vivo that could be effectively combined with RT in cancer therapy.


Subject(s)
Glioblastoma , Immunogenic Cell Death , Cell Line, Tumor , Chemoradiotherapy , Glioblastoma/therapy , Humans , Hydrogen-Ion Concentration
9.
Nanotechnology ; 32(49)2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34450600

ABSTRACT

This study aimed to prepare chitosan-coated silver nanotriangles (AgNTs) and assess their computed tomography (CT) contrast property byin vitroandin vivoexperiments. AgNTs with a range of sizes were synthesized by a seed-based growth method, and subsequently characterized by transmission electron microscopy (TEM), ultraviolet-visible absorption spectroscopy and dynamic light scattering. The x-ray attenuation capability of all prepared AgNTs was evaluated using micro CT. The CT contrast effect of AgNTs with the highest x-ray attenuation coefficient was investigated in MDA-MB-231 breast cancer cells and a mouse model of breast cancer. The TEM results displayed that all synthesized AgNTs were triangular in shape and their mean edge lengths ranged from 60 to 149 nm. All AgNTs tested exhibited stronger x-ray attenuation capability than iohexol at the same mass concentration of the active elements, and the larger the AgNTs size, the higher the x-ray attenuation coefficient. AgNTs with the largest size were selected for further research, due to their strongest x-ray attenuation capability and best biocompatibility. The attenuation coefficient of breast cancer cells treated with AgNTs increased in a particle concentration-dependent manner.In vivoCT imaging showed that the contrast of the tumor injected with AgNTs was significantly enhanced. These findings indicated that AgNTs could be a promising candidate for highly efficient tumor CT contrast agents.


Subject(s)
Breast Neoplasms/diagnostic imaging , Chitosan/chemistry , Contrast Media/chemistry , Silver/chemistry , Animals , Cell Line, Tumor , Dynamic Light Scattering , Female , Humans , Metal Nanoparticles/chemistry , Mice , Microscopy, Electron, Transmission , Neoplasm Transplantation , Particle Size , X-Ray Microtomography
10.
Small ; 17(34): e2100753, 2021 08.
Article in English | MEDLINE | ID: mdl-34259382

ABSTRACT

Tumor vasculature has long been considered as an extremely valuable therapeutic target for cancer therapy, but how to realize controlled and site-specific drug release in tumor blood vessels remains a huge challenge. Despite the widespread use of nanomaterials in constructing drug delivery systems, they are suboptimal in principle for meeting this demand due to their easy blood cell adsorption/internalization and short lifetime in the systemic circulation. Here, natural red blood cells (RBCs) are repurposed as a remote-controllable drug vehicle, which retains RBC's morphology and vessel-specific biodistribution pattern, by installing photoactivatable molecular triggers on the RBC membrane via covalent conjugation with a finely tuned modification density. The molecular triggers can burst the RBC vehicle under short and mild laser irradiation, leading to a complete and site-specific release of its payloads. This cell-based vehicle is generalized by loading different therapeutic agents including macromolecular thrombin, a blood clotting-inducing enzyme, and a small-molecule hypoxia-activatable chemodrug, tirapazamine. In vivo results demonstrate that the repurposed "anticancer RBCs" exhibit long-term stability in systemic circulation but, when tumors receive laser irradiation, precisely releases their cargoes in tumor vessels for thrombosis-induced starvation therapy and local deoxygenation-enhanced chemotherapy. This study proposes a general strategy for blood vessel-specific drug delivery.


Subject(s)
Drug Liberation , Drug Repositioning , Blood Vessels , Erythrocytes , Tissue Distribution
11.
J Nanobiotechnology ; 19(1): 147, 2021 May 19.
Article in English | MEDLINE | ID: mdl-34011362

ABSTRACT

BACKGROUND: Triple negative breast cancer (TNBC) is an aggressive tumor with extremely high mortality that results from its lack of effective therapeutic targets. As an adhesion molecule related to tumorigenesis and tumor metastasis, cluster of differentiation-44 (also known as CD44) is overexpressed in TNBC. Moreover, CD44 can be effectively targeted by a specific hyaluronic acid analog, namely, chitosan oligosaccharide (CO). In this study, a CO-coated liposome was designed, with Photochlor (HPPH) as the 660 nm light mediated photosensitizer and evofosfamide (also known as TH302) as the hypoxia-activated prodrug. The obtained liposomes can help diagnose TNBC by fluorescence imaging and produce antitumor therapy by synergetic photodynamic therapy (PDT) and chemotherapy. RESULTS: Compared with the nontargeted liposomes, the targeted liposomes exhibited good biocompatibility and targeting capability in vitro; in vivo, the targeted liposomes exhibited much better fluorescence imaging capability. Additionally, liposomes loaded with HPPH and TH302 showed significantly better antitumor effects than the other monotherapy groups both in vitro and in vivo. CONCLUSION: The impressive synergistic antitumor effects, together with the superior fluorescence imaging capability, good biocompatibility and minor side effects confers the liposomes with potential for future translational research in the diagnosis and CD44-overexpressing cancer therapy, especially TNBC.


Subject(s)
Chitosan/pharmacology , Liposomes/chemistry , Nitroimidazoles/pharmacology , Oligosaccharides/pharmacology , Phosphoramide Mustards/pharmacology , Photochemotherapy/methods , Triple Negative Breast Neoplasms/drug therapy , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Chitosan/chemistry , Female , Humans , Hyaluronan Receptors , Hyaluronic Acid , Mice , Mice, Inbred BALB C , Mice, Nude , Nanomedicine , Nitroimidazoles/chemistry , Oligosaccharides/chemistry , Optical Imaging , Phosphoramide Mustards/chemistry , Photosensitizing Agents/chemistry , Prodrugs/chemistry , Triple Negative Breast Neoplasms/pathology
12.
Nanotechnology ; 32(14): 145102, 2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33296880

ABSTRACT

Radioresistance significantly decreases the efficacy of radiotherapy, which can ultimately lead to tumor recurrence and metastasis. As a novel type of nano-radiosensitizer, silver nanoparticles (AgNPs) have shown promising radiosensitizing properties in the radiotherapy of glioma, but their ability to efficiently enter and accumulate in tumor cells needs to be improved. In the current study, AS1411 and verapamil (VRP) conjugated bovine serum albumin (BSA) coated AgNPs (AgNPs@BSA-AS-VRP) were synthesized and characterized. Dark-field imaging and inductively coupled plasma mass spectrometry were applied to investigate the accumulation of AgNPs@BSA-AS and AgNPs@BSA-AS-VRP mixed in different ratios in U251 glioma cells. To assess the influences of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP on the P-glycoprotein (P-gp) efflux activity, rhodamine 123 accumulation assay was carried out. Colony formation assay and tumor-bearing nude mice model were employed to examine the radiosensitizing potential of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP. Thioredoxin Reductase (TrxR) Assay Kit was used to detect the TrxR activity in cells treated with different functionally modified AgNPs. Characterization results revealed that AgNPs@BSA-AS-VRP were successfully constructed. When AgNPs@BSA-AS and AgNPs@BSA-AS-VRP were mixed in a ratio of 19:1, the amount of intracellular nanoparticles increased greatly through AS1411-mediated active targeting and inhibition of P-gp activity. In vitro and in vivo experiments clearly showed that the radiosensitization efficacy of 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP was much stronger than that of AgNPs@BSA and AgNPs@BSA-AS. It was also found that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP significantly inhibited intracellular TrxR activity. These results indicate that 19:1 mixed AgNPs@BSA-AS and AgNPs@BSA-AS-VRP can effectively accumulate in tumor cells and have great potential as high-efficiency nano-radiosensitizers in the radiotherapy of glioma.


Subject(s)
Aptamers, Nucleotide/metabolism , Brain Neoplasms/radiotherapy , Glioma/radiotherapy , Metal Nanoparticles/chemistry , Oligodeoxyribonucleotides/metabolism , Radiation Tolerance , Radiation-Sensitizing Agents/pharmacology , Silver/chemistry , Verapamil/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Brain Neoplasms/pathology , Cell Line, Tumor , Glioma/pathology , Humans , Oligodeoxyribonucleotides/chemistry , Oligodeoxyribonucleotides/pharmacology , Verapamil/chemistry , Verapamil/pharmacology
13.
Int J Nanomedicine ; 15: 7791-7803, 2020.
Article in English | MEDLINE | ID: mdl-33116501

ABSTRACT

BACKGROUND: The synergistic effect of nanomaterials and chemotherapeutics provides a novel strategy for the treatment of tumors. Silver nanotriangles (AgNTs) exhibited some unique properties in nanomedicine. Studies on the synergy of silver-based nanomaterials and anti-tumor drugs against gliomas are rare. MATERIALS AND METHODS: Chitosan-coated AgNTs were prepared, followed by characterization using transmission electron microscopy, ultraviolet-visible spectroscopy and X-ray diffraction. The anti-glioma effect of cyclophosphamide (CTX), 5-fluorouracil (5-FU), oxaliplatin (OXA), doxorubicin (DOX) or gemcitabine (GEM) combined with AgNTs in different glioma cell lines (U87, U251 and C6) was assessed by the MTT assay to screen out a drug with the most broad-spectrum and strongest synergistic anti-glioma activity. The intracellular reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP) and cell apoptosis were detected by flow cytometry. The possible underlying mechanisms of the synergy were further investigated with ROS scavenger and specific inhibitors of C-jun N-terminal kinase (JNK), p38 and extracellular signal-regulated kinase 1/2 pathways. RESULTS: The synthesized AgNTs were mainly triangular and truncated triangular with an average edge length of 125 nm. A synergistic anti-glioma effect of AgNTs combined with CTX was not observed, and the synergism between AgNTs and 5-FU was cell type-specific. AgNTs combined with OXA, DOX or GEM displayed synergistic effects in various glioma cell lines, and the combination of AgNTs and GEM showed the strongest synergistic activity. A decrease in cell viability, loss of the MMP and an increase in apoptosis rate induced by this synergy could be significantly attenuated by the ROS scavenger N-acetylcysteine and JNK inhibitor SP600125. CONCLUSION: Our results suggested that the combination of AgNTs and GEM possessed broad-spectrum and potent synergistic anti-glioma activity, resulting from cell apoptosis mediated by a ROS-dependent mitochondrial pathway in which JNK might be involved.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Glioma/pathology , Mitochondria/drug effects , Nanostructures/chemistry , Silver/chemistry , Silver/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Drug Synergism , Fluorouracil/pharmacology , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
14.
Langmuir ; 36(39): 11637-11644, 2020 10 06.
Article in English | MEDLINE | ID: mdl-32902987

ABSTRACT

Many noble metal-based nanoparticles have emerged for applications in cancer radiotherapy in recent years, but few investigations have been carried out for palladium nanoparticles. Herein, palladium nanosheets (Pd NSs), which possess a sheetlike morphology with a diameter of ∼14 nm and a thickness of ∼2 nm, were utilized as a sensitizer to improve the performance of radiotherapy. It was found that Pd NSs alone did not decrease the cell viability after treatment for as long as 130 h, suggesting the excellent cytocompatibility of the nanoagents. However, the viability of cancer cells treated with X-ray irradiation became lower, and the viability became even lower if the cells were co-treated with X-ray and Pd NSs, indicating the radiosensitization effect of Pd NSs. Additionally, compared with X-ray irradiation, the combined treatment of Pd NSs and X-ray irradiation induced the generation of more DNA double-stranded breaks and reactive oxygen species within cancer cells, which eventually caused elevated cell apoptosis. Moreover, in vivo experiments also verified the radiosensitization effect and the favorable biocompatibility of Pd NSs, indicating their potential for acquiring satisfactory in vivo radiotherapeutic effect at lower X-ray doses. It is believed that the present research will open new avenues for the application of noble metal-based nanoparticles in radiosensitization.


Subject(s)
Metal Nanoparticles , Radiation-Sensitizing Agents , Apoptosis , Cell Survival , Metal Nanoparticles/toxicity , Palladium , Radiation-Sensitizing Agents/toxicity
15.
Int J Radiat Biol ; 96(5): 584-595, 2020 05.
Article in English | MEDLINE | ID: mdl-31906761

ABSTRACT

Purpose: To study whether radiation-induced bleeding in the bone marrow induced iron accumulation, and subsequently caused ferroptosis in granulocyte-macrophage hematopoietic progenitor cells.Materials and methods: Male mice were subjected to different doses (0, 4, 8, or 10 Gy) of gamma radiation from a 137Cs source. The changes in iron metabolism or ferroptosis-related parameters of irradiated bone marrow were accessed with biochemical, histopathological, and antibody methods. Hematocytes were detected with a hematology analyzer. The counts of granulocyte-macrophage hematopoietic progenitor cells were measured with the granulocyte-macrophage colony-forming unit.Results: Iron accumulation occurred in the bone marrow, which caused by radiation-induced hemorrhage. The iron accumulation triggered an iron regulatory protein-ferroportin 1 axis to increase serum iron levels. Using LDN193189, radiation-induced iron accumulation was demonstrated to decrease white blood cell counts at least partly through a decrease in the counts of granulocyte-macrophage hematopoietic progenitor cells. The reduction in the counts of granulocyte-macrophage hematopoietic progenitor cells was subsequently demonstrated to attribute to ferroptosis with the use of ferroptosis inhibitors and through the detection of ferroptosis related-parameters. The survival rate of irradiated mice was improved using Ferrostatin-1 or LDN193189.Conclusions: These findings suggest that radiation-induced hemorrhage in the bone marrow causes ferroptosis in granulocyte-macrophage hematopoietic progenitor cells, and anti-ferroptosis has the potential to be a radioprotective strategy to ameliorate radiation-induced hematopoietic injury.


Subject(s)
Ferroptosis/radiation effects , Granulocyte-Macrophage Progenitor Cells/radiation effects , Animals , Cyclohexylamines/pharmacology , Gamma Rays , Granulocyte-Macrophage Progenitor Cells/metabolism , Granulocyte-Macrophage Progenitor Cells/pathology , Iron/metabolism , Leukocyte Count , Male , Mice , Mice, Inbred ICR , Phenylenediamines/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology
16.
J Environ Sci (China) ; 88: 200-208, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31862061

ABSTRACT

Exposure to engineered nanomaterials (ENMs), such as graphene oxide (GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction. Wnt signaling pathway is conserved evolutionarily in organisms. Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling. In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3 (a component of APC complex), and two ß-catenin proteins (BAR-1 and HMP-2), which mediated the induction of GO toxicity. In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2. Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier. Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.


Subject(s)
Caenorhabditis elegans/drug effects , Environmental Pollutants/toxicity , Graphite/toxicity , Wnt Signaling Pathway/drug effects , Animals , Caenorhabditis elegans/physiology , Caenorhabditis elegans Proteins/metabolism , Cell Cycle Proteins , Dishevelled Proteins , Glycogen Synthase Kinase 3 , Intestines , Oxides
18.
Int J Nanomedicine ; 14: 9483-9496, 2019.
Article in English | MEDLINE | ID: mdl-31819445

ABSTRACT

BACKGROUND: The efficacy of radiotherapy for glioma is often limited by the radioresistance of glioma cells. The radiosensitizing effects of silver nanoparticles (AgNPs) on glioma were found in the previous studies of our group. In order to enhance the radiosensitivity of tumor cells and selectively kill them while reducing the side effects of irradiation therapy, targeted modification of AgNPs is urgently needed. MATERIALS AND METHODS: In the present study, AgNPs functionalized with polyethylene glycol (PEG) and aptamer As1411 (AsNPs) were synthesized and subsequently characterized by transmission electron microscopy, ultraviolet-visible spectroscopy and Fourier transform infrared spectroscopy. Then the targeting property of AsNPs was evaluated by dark-field imaging, confocal microscopy and in vivo imaging. Both colony formation assay and glioma-bearing mouse model were employed to study the radiosensitizing effect of AsNPs. RESULTS: The characterization results revealed a spherical shape of AgNPs with an average diameter of 18 nm and the successful construction of AsNPs. AsNPs were confirmed to specifically target C6 glioma cells, but not normal human microvascular endothelial cells. Moreover, AsNPs could not only internalize into tumor cells, but also penetrate into the core of tumor spheroids. In vitro experiments showed that AsNPs exhibited a better radiosensitizing effect than AgNPs and PEGylated AgNPs (PNPs), inducing a higher rate of apoptotic cell death. In vivo imaging demonstrated that Cy5-AsNPs preferentially accumulated at the tumor site, and the ratio of fluorescence intensity of Cy5-AsNPs to that of Cy5-PNPs reached the maximum at 6 h post-systemic administration. Furthermore, the combination of AsNPs with irradiation significantly prolonged the median survival time of C6 glioma-bearing mice. CONCLUSION: Our results indicated that AsNPs could be an effective nano-radiosensitizer for glioma targeting treatment.


Subject(s)
Aptamers, Nucleotide/chemistry , Glioma/radiotherapy , Metal Nanoparticles/chemistry , Oligodeoxyribonucleotides/chemistry , Polyethylene Glycols/chemistry , Radiation-Sensitizing Agents/pharmacology , Silver/chemistry , Animals , Apoptosis/drug effects , Cell Line, Tumor , Disease Models, Animal , Endothelial Cells/drug effects , Female , Glioma/drug therapy , Humans , Hydrodynamics , Metal Nanoparticles/ultrastructure , Mice, Inbred BALB C , Mice, Nude , Particle Size , Rats , Spheroids, Cellular/pathology , Static Electricity , Tissue Distribution
19.
Sci Rep ; 9(1): 16474, 2019 11 11.
Article in English | MEDLINE | ID: mdl-31712608

ABSTRACT

Caenorhabditis elegans is useful for assessing biological effects of spaceflight and simulated microgravity. The molecular response of organisms to simulated microgravity is still largely unclear. Mitochondrial unfolded protein response (mt UPR) mediates a protective response against toxicity from environmental exposure in nematodes. Using HSP-6 and HSP-60 as markers of mt UPR, we observed a significant activation of mt UPR in simulated microgravity exposed nematodes. The increase in HSP-6 and HSP-60 expression mediated a protective response against toxicity of simulated microgravity. In simulated microgravity treated nematodes, mitochondria-localized ATP-binding cassette protein HAF-1 and homeodomain-containing transcriptional factor DVE-1 regulated the mt UPR activation. In the intestine, a signaling cascade of HAF-1/DVE-1-HSP-6/60 was required for control of toxicity of simulated microgravity. Therefore, our data suggested the important role of mt UPR activation against the toxicity of simulated microgravity in organisms.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Stress, Physiological , Unfolded Protein Response , Weightlessness Simulation/adverse effects , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/growth & development , Caenorhabditis elegans Proteins/genetics , Mitochondria/genetics , Mitochondria/pathology , Signal Transduction
20.
Sci Rep ; 9(1): 6026, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988375

ABSTRACT

Exposure to graphene oxide (GO) induced some dysregulated microRNAs (miRNAs), such as the increase in mir-247, in nematode Caenorhabditis elegans. We here further identified goa-1 encoding a Gαo and pkc-1 encoding a serine/threonine protein kinase as the targets of neuronal mir-247 in the regulation of GO toxicity. GO exposure increased the expressions of both GOA-1 and PKC-1. Mutation of goa-1 or pkc-1 induced a susceptibility to GO toxicity, and suppressed the resistance of mir-247 mutant to GO toxicity. GOA-1 and PKC-1 could also act in the neurons to regulate the GO toxicity, and neuronal overexpression of mir-247 could not affect the resistance of nematodes overexpressing neuronal goa-1 or pkc-1 lacking 3'-UTR to GO toxicity. In the neurons, GOA-1 acted upstream of diacylglycerol kinase/DGK-1 and PKC-1 to regulate the GO toxicity. Moreover, DGK-1 and GOA-1 functioned synergistically in the regulation of GO toxicity. Our results highlight the crucial role of neuronal Gαo signaling in response to GO in nematodes.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Graphite/toxicity , Signal Transduction/drug effects , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , Gene Expression Regulation/drug effects , MicroRNAs/genetics , Neurons/drug effects , Neurons/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...