Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-32154242

ABSTRACT

Acetoin is a potential platform compound for a variety of chemicals. Bacillus licheniformis MW3, a thermophilic and generally regarded as safe (GRAS) microorganism, can produce 2,3-butanediol with a high concentration, yield, and productivity. In this study, B. licheniformis MW3 was metabolic engineered for acetoin production. After deleting two 2,3-butanediol dehydrogenases encoding genes budC and gdh, an engineered strain B. licheniformis MW3 (ΔbudCΔgdh) was constructed. Using fed-batch fermentation of B. licheniformis MW3 (ΔbudCΔgdh), 64.2 g/L acetoin was produced at a productivity of 2.378 g/[L h] and a yield of 0.412 g/g from 156 g/L glucose in 27 h. The fermentation process exhibited rather high productivity and yield of acetoin, indicating that B. licheniformis MW3 (ΔbudCΔgdh) might be a promising acetoin producer.

2.
Biotechnol Biofuels ; 8: 143, 2015.
Article in English | MEDLINE | ID: mdl-26379775

ABSTRACT

BACKGROUND: Butane-2,3-diol (2,3-BD) is a fuel and platform biochemical with various industrial applications. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. Microbial fermentative processes have been reported for (2R,3R)-2,3-BD and meso-2,3-BD production. RESULTS: The production of (2S,3S)-2,3-BD from glucose was acquired by whole cells of recombinant Escherichia coli coexpressing the α-acetolactate synthase and meso-butane-2,3-diol dehydrogenase of Enterobacter cloacae subsp. dissolvens strain SDM. An optimal biocatalyst for (2S,3S)-2,3-BD production, E. coli BL21 (pETDuet-PT7-budB-PT7-budC), was constructed and the bioconversion conditions were optimized. With the addition of 10 mM FeCl3 in the bioconversion system, (2S,3S)-2,3-BD at a concentration of 2.2 g/L was obtained with a stereoisomeric purity of 95.0 % using the metabolically engineered strain from glucose. CONCLUSIONS: The engineered E. coli strain is the first one that can be used in the direct production of (2S,3S)-2,3-BD from glucose. The results demonstrated that the method developed here would be a promising process for efficient (2S,3S)-2,3-BD production.

3.
PLoS One ; 5(1): e8860, 2010 Jan 26.
Article in English | MEDLINE | ID: mdl-20126645

ABSTRACT

BACKGROUND: The high costs of pyridine nucleotide cofactors have limited the applications of NAD(P)-dependent oxidoreductases on an industrial scale. Although NAD(P)H regeneration systems have been widely studied, NAD(P)(+) regeneration, which is required in reactions where the oxidized form of the cofactor is used, has been less well explored, particularly in whole-cell biocatalytic processes. METHODOLOGY/PRINCIPAL FINDINGS: Simultaneous overexpression of an NAD(+) dependent enzyme and an NAD(+) regenerating enzyme (H(2)O producing NADH oxidase from Lactobacillus brevis) in a whole-cell biocatalyst was studied for application in the NAD(+)-dependent oxidation system. The whole-cell biocatalyst with (2R,3R)-2,3-butanediol dehydrogenase as the catalyzing enzyme was used to produce (3R)-acetoin, (3S)-acetoin and (2S,3S)-2,3-butanediol. CONCLUSIONS/SIGNIFICANCE: A recombinant strain, in which an NAD(+) regeneration enzyme was coexpressed, displayed significantly higher biocatalytic efficiency in terms of the production of chiral acetoin and (2S,3S)-2,3-butanediol. The application of this coexpression system to the production of other chiral chemicals could be extended by using different NAD(P)-dependent dehydrogenases that require NAD(P)(+) for catalysis.


Subject(s)
NAD/metabolism , Biocatalysis , Electrophoresis, Polyacrylamide Gel , Escherichia coli/metabolism , Hydrogen-Ion Concentration , Kinetics , Multienzyme Complexes/metabolism , NADH, NADPH Oxidoreductases/metabolism , Recombination, Genetic , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...