Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Immunol ; 67(3): 129-141, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36540014

ABSTRACT

Osteoarthritis (OA) is a degenerative disease that occurs mostly in the elderly, and its specific pathogenesis is still unknown, but recent studies have found that circular RNA generally display aberrant expression in OA. Our study explored the expression characteristics and mechanism of action of circ-NT5C2 in OA. Circ-NT5C2, microRNA-142-5p (miR-142-5p), and nicotinamide phosphoribosyltransferase (NAMPT) mRNA levels were measured using RT-qPCR. Western blot was employed to assess the protein level of NAMPT and extracellular matrix (ECM) production-related markers. The viability, proliferation, apoptosis and inflammation were examined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, and enzyme-linked immunosorbent assay, respectively. Relationship between miR-142-5p and circ-NT5C2 or NAMPT was demonstrated by dual-luciferase reporter system and RNA immunoprecipitation assay. We reported that circ-NT5C2 and NAMPT were greatly upregulated, and miR-142-5p level was constrained in OA tissues and in a cell model. Circ-NT5C2 silencing alleviated IL-1ß-induced inhibitory effects on chondrocyte proliferation and ECM generation, meanwhile the promotional role of IL-1ß on chondrocyte apoptosis and inflammation was also weakened. The targeting relationship of miR-142-5p with either circ-NT5C2 or NAMPT was confirmed. Knockdown of miR-142-5p reversed the suppressive effects of circ-NT5C2 silencing on the OA progression in vitro, and NAMPT overexpression also attenuated the effects of miR-142-5p upregulation in an OA cell model. Collectively, circ-NT5C2 accelerated the OA process by targeting the miR-142-5p/NAMPT axis. This study provides valuable information to find a better treatment for OA.


Subject(s)
5'-Nucleotidase , Interleukin-1beta , MicroRNAs , Nicotinamide Phosphoribosyltransferase , Osteoarthritis , Aged , Humans , 5'-Nucleotidase/genetics , Apoptosis/genetics , Inflammation/genetics , Interleukin-1beta/genetics , MicroRNAs/genetics , Nicotinamide Phosphoribosyltransferase/genetics , Osteoarthritis/genetics
2.
World J Gastroenterol ; 25(23): 2898-2910, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-31249448

ABSTRACT

BACKGROUND: NIMA related kinase 2 (NEK2) is closely related to mitosis, and it is currently considered to be over-expressed frequently in many poorly prognostic cancers. However, the effect of the up-regulated NEK2 on cellular signaling in tumors, such as gastric cancer (GC), is con-fusing. AIM: To determine the role of the up-regulation of NEK2 in GC. METHODS: To investigate the pathological significance of NEK2 in GC, the expression pattern of NEK2 in GC was investigated based on the "Oncomain" database and compared between 30 pairs of cancer samples and adjacent tissues. The co-expression of NEK2 and ERK in GC was analyzed using The Cancer Genome Atlas (TCGA) database and confirmed in clinical samples by quantitative real-time PCR (qRT-PCR), and the survival curve was also plotted. Western blot or qRT-PCR was used to analyze the effect of NEK2 on the phosphorylation levels of ERK and c-JUN in two GC cell lines (BGC823 and SGC7901) with NEK2 overexpression, and the expression of the downstream effector cyclin D1. Furthermore, CCK8, EdU incorporation assay, and flow cytometry were used to detect the proliferative ability of BGC823 and SGC7901 cells with stably silenced ERK. RESULTS: NEK2 was significantly up-regulated in human GC tissues. ERK was significantly associated with NEK2 expression in human clinical specimens, and combined overexpression of NEK2 and ERK potentially forecasted a poor prognosis and survival in GC patients. NEK2 knockdown in GC cells inhibited ERK and c-JUN phosphory-lation and reduced the transcription of cyclin D1. More interestingly, NEK2 can rescue the inhibition of cellular viability, proliferation, and cell cycle progression due to ERK knockdown. CONCLUSION: Our results indicate that NEK2 plays a carcinogenic role in the malignant proliferation of GC cells via the ERK/MAPK signaling, which may be important for treatment and improving patient survival.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Proliferation , MAP Kinase Signaling System , NIMA-Related Kinases/metabolism , Stomach Neoplasms/pathology , Cell Line, Tumor , Gene Knockdown Techniques , Humans , NIMA-Related Kinases/genetics , Prognosis , Stomach Neoplasms/mortality , Up-Regulation
3.
J Mol Model ; 19(12): 5479-87, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24241127

ABSTRACT

The polycyclic p-quinodimethanes are proposed to be the novel candidates of the high-performance nonlinear optical (NLO) materials because of their large third order polarizabilities (γ). We investigate the switchable NLO responses of a series of polycyclic p-quinodimethanes with redox properties by employing the density functional theory (DFT). The polycyclic p-quinodimethanes are forecasted to exhibit obvious pure diradical characters because of their large y 0 index (the y 0 index is a value between 0 [closed-shell state] and 1 [pure biradical state]). The γ values of these polycyclic p-quinodimethanes and their corresponding one-electron and two-electron reduced/oxidized species are calculated by the (U)BHandHLYP method. The γ values of polycyclic p-quinodimethanes and their corresponding one-electron reduced species are all positive and significantly different. The large differences of the γ values are due to a change in the transition energy and are related to the different delocalization of the spin density, which demonstrates that the NLO switching is more effective on one-electron reduction reactions. Therefore, the study on these polycyclic p-quinodimethanes provides a guideline for a molecular design of highly efficient NLO switching.

4.
J Mol Graph Model ; 41: 79-88, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23500631

ABSTRACT

The third-order nonlinear optical (NLO) properties of aromatic diimide molecules have been studied for the first time using density functional theory (DFT) with a finite field (FF). This study shows that the size of the aromatic core can affect the static second hyperpolarizability (γ). Increasing the number of benzenes along the longitudinal axis can effectively improve the γ values because the degree of charge transfer along the longitudinal direction increases, whereas an increase in the number of benzenes along the perpendicular axis does not enhance the γ values. Furthermore, the NLO responses of the reduced form radical anions 1(-), 5(-) and 6(-), which were obtained by a reversible redox process, are discussed. The results show that the γ values of the radical anions are changed by the redox process. For the reduced form radical anion 6(-), the γ value is -1906.71×10(-36)esu, and its absolute value is ∼7.3 times larger than that of its neutral parent. An analysis of the BLA values demonstrates that the γ value is closely related to the conjugation of the aromatic core used in the redox process.


Subject(s)
Benzene Derivatives/chemistry , Free Radicals/chemistry , Imides/chemistry , Anions , Models, Chemical , Nonlinear Dynamics , Oxidation-Reduction , Quantum Theory , Static Electricity
5.
J Phys Chem A ; 116(43): 10496-506, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23050877

ABSTRACT

The static second-order nonlinear optical (NLO) properties on a series of the two-dimensional (2D) pincer Ru(II) complexes with the substituted Tpy and H(2)SCS tridentate ligands (Tpy = 2,2':6',2″-terpyridyl and H(2)SCS = 2,6-bis(benzylaminothiocarbonyl)phenyl) have been investigated by density functional theory (DFT). Introducing different donor/acceptor substituents to two ligands has an influence on the static first hyperpolarizabilities (ß(tot)) of the 2D systems. Compared to the reference system 1 [Ru(H(2)SCS)(Tpy)](+), introducing the branches with strong electron acceptor group (p-NO(2)-phenylethynyl) to the Tpy ligand or the branches with strong electron donor group (p-NH(2)-phenylethynyl) to the H(2)SCS ligand can effectively improve the ß(tot) values. Time-dependent DFT (TDDFT) calculations indicate that the enhanced ß(tot) values of the substituted systems are dominated by the intraligand charge transfer (ILCT), metal-to-ligand charge transfer (MLCT) and ligand-to-metal charge transfer (LMCT) transitions. Furthermore, the proton abstraction plays an important role in tuning the second-order NLO response. Particularly, for system 5 bearing the branches with NO(2) groups on H(2)SCS ligand, there is a dramatic enhancement in the ß(tot) values for its deprotonated forms. The ß(tot) values of the monodeprotonated system 5-H and the dideprotonated system 5-2H (58.712 × 10(-30) and 761.803 × 10(-30) esu) are about 7.58 times and 36.4 times larger than their diprotonated system 5, respectively. The second-order NLO responses based on substituent effect and proton abstraction switch are two-dimensional in characteristic with the large off-diagonal tensor values.

6.
J Mol Graph Model ; 27(2): 140-6, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18485767

ABSTRACT

The interaction potential energies of water-water and water-methane in structure-I unit cell of methane hydrate are calculated from 2.1 to 8.0A using density functional theory (DFT) B3LYP/TZVP. The curves of potential energies are corrected for basis set superposition error (BSSE) and dispersion interaction using a 4-term L-J (4,6-8,12) correction equation, which is derived from CCSD(T)/cc-pVTZ calculations of water-water and water-methane molecular pairs, using least squares curve-fitting. The methane hydrate unit cell is a regular water dodecahedron cell consisting of 20 water molecules with a methane molecule in the center. The geometries of water and methane are optimized at CCSD(T)/cc-pVTZ level. The BSSE-corrections are calculated for water-water and water-methane interaction energies as functions of the side length, l, of the dodecahedron cell at B3LYP/TZVP level in the range from 2.1 to 8.0A. The BSSE CP-corrected and dispersion-corrected potential energy surfaces (PES) of water-water and water-methane are useful for molecular dynamics simulation of gas clathrate-hydrates.


Subject(s)
Methane/chemistry , Models, Chemical , Models, Molecular , Thermodynamics , Water/chemistry
7.
J Mol Graph Model ; 26(6): 1014-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17913525

ABSTRACT

In this study the excess chemical potential of the integral equation theory, 3D-RISM-HNC [Q. Du, Q. Wei, J. Phys. Chem. B 107 (2003) 13463-13470], is visualized in three-dimensional form and localized at interaction sites of solute molecule. Taking the advantage of reference interaction site model (RISM), the calculation equations of chemical excess potential are reformulized according to the solute interaction sites s in molecular space. Consequently the solvation free energy is localized at every interaction site of solute molecule. For visualization of the 3D-RISM-HNC calculation results, the excess chemical potentials are described using radial and three-dimensional diagrams. It is found that the radial diagrams of the excess chemical potentials are more sensitive to the bridge functions than the radial diagrams of solvent site density distributions. The diagrams of average excess chemical potential provide useful information of solute-solvent electrostatic and van der Waals interactions. The local description of solvation free energy at active sites of solute in 3D-RISM-HNC may broaden the application scope of statistical mechanical integral equation theory in solution chemistry and life science.


Subject(s)
Models, Statistical , Solvents/chemistry , Mathematical Computing , Static Electricity , Thermodynamics , Water/chemistry
8.
J Chem Theory Comput ; 3(5): 1665-72, 2007 Sep.
Article in English | MEDLINE | ID: mdl-26627612

ABSTRACT

A general and empirical method is proposed for correction of London dispersion and other deficiencies in density functional theory (DFT). This method is based on the existing Lennard-Jones (L-J) equation and van der Waals parameters. The benchmark of energy correction is set as the energy difference between DFT and more accurate methods, for example CCSD(T). The energy correction includes all differences between CCSD(T) and DFT, dispersion energy, configuration interaction, induction interaction, residual correlation, and other effects. The energy correction is expressed as a linear combination of van der Waals potentials of nonbonded atomic pairs. The combination coefficients are determined using a least-squares approach in a training set of molecular pairs. The coefficients then can be used for the energy corrections in DFT calculations in a molecular family. Three correction equations of molecular pair interaction energy, water-water, water-methane, and methane-methane, are derived for methane hydrate simulation. The correction equation of the water-water pair is applied in the DFT calculation of water pentamer, yielding good intermolecular potential energy surfaces (PES), very close to the results of CCSD(T) over the active interaction range from 2.1 Å to 8.0 Å.

9.
J Chem Inf Model ; 45(2): 347-53, 2005.
Article in English | MEDLINE | ID: mdl-15807498

ABSTRACT

We present the theoretical derivation of a heuristic molecular lipophilicity potential (HMLP), which gives a structure-based and quantum chemical description of an important aspect of molecular solvation. The quantum mechanical electrostatic potential (ESP) V(r) on a formal molecular surface is calculated, and then the molecular lipophilicity potential L(r) is constructed by comparing the local electron density with the ESP on the surrounding atoms using a screening function. The screening function is derived from statistical mechanical theory treating the polar solvent molecules as dipoles. HMLP is able to describe the main interactions of solute molecules with polar and nonpolar solvent molecules. HMLP is a unified lipophilicity and hydrophilicity potential: its positive values represent lipophilicity, and its negative values represent hydrophilicity. In this paper, several examples show that HMLP gives more reliable descriptions for the molecular solvation than some other methods, such as atomic partial charges and the empirical lipophilicity potential.


Subject(s)
Lipids/chemistry , Models, Chemical , Solvents/chemistry , Hydrophobic and Hydrophilic Interactions , Methylation , Molecular Structure , Normal Distribution , Oxides/chemistry , Polyethylene Glycols/chemistry , Propionates/chemistry , Solubility , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...