Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(11)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34834767

ABSTRACT

Taiwania cryptomerioides is a monotypic species, and its terpenoid-rich property has been reported in recent years. To uncover monoterpene biosynthesis in T. cryptomerioides, this study used transcriptome mining to identify candidates with tentative monoterpene synthase activity. Along with the phylogenetic analysis and in vitro assay, two geraniol synthases (TcTPS13 and TcTPS14), a linalool synthase (TcTPS15), and a ß-pinene synthase (TcTPS16), were functionally characterized. Via the comparison of catalytic residues, the Cys/Ser at region 1 might be crucial in determining the formation of α-pinene or ß-pinene. In addition, the Cupressaceae monoterpene synthases were phylogenetically clustered together; they are unique and different from those of published conifer species. In summary, this study aimed to uncover the ambiguous monoterpenoid network in T. cryptomerioide, which would expand the landscape of monoterpene biosynthesis in Cupressaceae species.

2.
Plant Sci ; 289: 110277, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31623780

ABSTRACT

Along with the species evolution, plants have evolved ways to produce a different collection of terpenoids to accommodate its biotic and abiotic environment, and terpene synthase (TPS) is one of the major contributors to various terpene compounds. The timber of a monotypic and relictual conifer species of Cupressace, Taiwania cryptomerioides, has excellent durability, and one of the essential factors for Taiwania to resist decay and insect pests is sesquiterpene. Compared to other conifers, Taiwania has much higher abundance of cadinene-type sesquiterpenes, and the presence of cedrene-type sesquiterpenes. To understand sesquiterpene biosynthesis in Taiwania, we functionally characterized 10 T. cryptomerioides TPSs (TcTPSs) in vivo or in planta, which could catalyze sesquiterpene formation and potentially are involved in biosynthesis of diverse sesquiterpenoids in Taiwania. The distant phylogenetic relationship and the intron loss event of TcTPSs correlate to the differentiation of chemical profile Taiwania compared to other conifers. Furthermore, we identified TcTPS3 and TcTPS12 as δ-cadinene synthase, and TcTPS6 as cedrol synthase, which demonstrates the important contributions of dynamic evolution in TPSs to the chemical diversity in plants. Combining with functional characterization and comparison of catalytic residues, we conclude at least three catalytic routes for sesquiterpene biosynthesis in this species, and the skeleton diversity has been expended in T. cryptomeriodes.


Subject(s)
Alkyl and Aryl Transferases/genetics , Cupressaceae/genetics , Plant Proteins/genetics , Sesquiterpenes/metabolism , Transcriptome , Alkyl and Aryl Transferases/metabolism , Cupressaceae/metabolism , Phylogeny , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...