Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Alzheimers Dement ; 20(5): 3504-3524, 2024 May.
Article in English | MEDLINE | ID: mdl-38605605

ABSTRACT

INTRODUCTION: Cognitive decline progresses with age, and Nr4a1 has been shown to participate in memory functions. However, the relationship between age-related Nr4a1 reduction and cognitive decline is undefined. METHODS: Nr4a1 expressions were evaluated by quantitative PCR and immunochemical approaches. The cognition of mice was examined by multiple behavioral tests. Patch-clamp experiments were conducted to investigate the synaptic function. RESULTS: NR4A1 in peripheral blood mononuclear cells decreased with age in humans. In the mouse brain, age-dependent Nr4a1 reduction occurred in the hippocampal CA1. Deleting Nr4a1 in CA1 pyramidal neurons (PyrNs) led to the impairment of cognition and excitatory synaptic function. Mechanistically, Nr4a1 enhanced TrkB expression via binding to its promoter. Blocking TrkB compromised the cognitive amelioration with Nr4a1-overexpression in CA1 PyrNs. DISCUSSION: Our results elucidate the mechanism of Nr4a1-dependent TrkB regulation in cognition and synaptic function, indicating that Nr4a1 is a target for the treatment of cognitive decline. HIGHLIGHTS: Nr4a1 is reduced in PBMCs and CA1 PyrNs with aging. Nr4a1 ablation in CA1 PyrNs impaired cognition and excitatory synaptic function. Nr4a1 overexpression in CA1 PyrNs ameliorated cognitive impairment of aged mice. Nr4a1 bound to TrkB promoter to enhance transcription. Blocking TrkB function compromised Nr4a1-induced cognitive improvement.


Subject(s)
Aging , Cognitive Dysfunction , Nuclear Receptor Subfamily 4, Group A, Member 1 , Animals , Cognitive Dysfunction/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Mice , Humans , Aging/physiology , Male , CA1 Region, Hippocampal/metabolism , Pyramidal Cells/metabolism , Receptor, trkB/metabolism , Leukocytes, Mononuclear/metabolism , Aged , Female , Mice, Inbred C57BL
2.
Sci Rep ; 14(1): 3832, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38361044

ABSTRACT

The composition and configuration of landscapes are critical important to design effective approaches to mitigate urban thermal environment in the urbanization process. In this research, land use maps and land surface temperature (LST) retrieval were derived in Nanchang city of central China based on product datasets and the thermal infrared band of Landsat. The results showed that the thermal environment of Nanchang had become worse over the past two decades, that is, the proportion of area of the extremely low temperature zone (ELTZ) decreased from 4.39 to 0.77% from 2001 to 2020, and that of medium temperature zone (MTZ) reduced by 20%, whereas those of the high temperature zone (HTZ) and the extremely high temperature zone (EHTZ) increased sharply after 2001, and by 2020, the area ratio increased by 11% and 7.16%, respectively. The agricultural land (AL) area decreased from 68.44 to 49.69%, was gradually replaced by construction land (CL). The CL occupied the largest proportion in EHTZ, HTZ and slight high temperature zone (SHTZ); water landscape (WL) and green land (GL) occupied the largest proportion in ELTZ, low temperature zone (LTZ); and AL occupied the largest proportion in SHTZ, MTZ, and slight low temperature zone (SLTZ). Landscape configuration also obviously impacted on LST. The model fitting was well (R = 0.87) between land use area and LST by multiple regression analysis. The significant correlation between LST and six landscape pattern indices of CL (p < 0.01) indicated that the larger percent (PLANT, R = 0.78) and the more concentrate (LPI, R = 0.73) of CL implied the higher LST, while the more fragment (NP, R = - 0.45), dispersed and complex shape (R = - 0.35) were benefit to relieve LST. Contrastively, the larger percent and the more concentrated and complex shape distribution of AL, GL and WL, the lower LST (p < 0.01). In addition, LST had closely correlation with landscape level indices such as aggregation degree (AI, R = 0.44) and diversity (SHDI, R = - 0.60) (p < 0.01).

3.
Eur J Pharmacol ; 962: 176201, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37984728

ABSTRACT

Multiple sclerosis (MS) is an inflammatory demyelinating disease in the central nervous system caused by T cell activation mediated by peripheral macrophages, resulting in severe neurological deficits and disability. Due to the currently limited and expensive treatments for MS, we here introduce an economic Chinese medicine extract, (5R)-5-Hydroxytriptolide (LLDT-8), which shows low toxicity and high immunosuppressive activity. We used the widely accepted mouse model of MS, experimental autoimmune encephalomyelitis (EAE), to examine the immunosuppressive effect of LLDT-8 in vivo. Through the RNA-sequence analysis of peripheral macrophages in EAE mice, we discovered that LLDT-8 alleviates the symptoms of EAE by inhibiting the proinflammatory effect of macrophages, thereby blocking the activation and proliferation of T cells. In all, we found that LLDT-8 could be a potential treatment for MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Mice , Animals , Encephalomyelitis, Autoimmune, Experimental/drug therapy , T-Lymphocytes , Macrophages , Lymphocyte Activation , Disease Models, Animal , Mice, Inbred C57BL
4.
Neurosci Bull ; 40(4): 483-499, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37979054

ABSTRACT

Chronic cerebral hypoperfusion is one of the pathophysiological mechanisms contributing to cognitive decline by causing white matter injury. Microglia phagocytosing myelin debris in a timely manner can promote remyelination and contribute to the repair of white matter. However, milk fat globule-epidermal growth factor-factor 8 (MFG-E8), a microglial phagocytosis-related protein, has not been well studied in hypoperfusion-related cognitive dysfunction. We found that the expression of MFG-E8 was significantly decreased in the brain of mice after bilateral carotid artery stenosis (BCAS). MFG-E8 knockout mice demonstrated more severe BCAS-induced cognitive impairments in the behavioral tests. In addition, we discovered that the deletion of MFG-E8 aggravated white matter damage and the destruction of myelin microstructure through fluorescent staining and electron microscopy. Meanwhile, MFG-E8 overexpression by AAV improved white matter injury and increased the number of mature oligodendrocytes after BCAS. Moreover, in vitro and in vivo experiments showed that MFG-E8 could enhance the phagocytic function of microglia via the αVß3/αVß5/Rac1 pathway and IGF-1 production to promote the differentiation of oligodendrocyte progenitor cells into mature oligodendrocytes. Interestingly, we found that MFG-E8 was mainly derived from astrocytes, not microglia. Our findings suggest that MFG-E8 is a potential therapeutic target for cognitive impairments following cerebral hypoperfusion.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Remyelination , Mice , Animals , Myelin Sheath , Phagocytosis/physiology , Microglia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Mice, Knockout , Mice, Inbred C57BL
5.
Genome Med ; 15(1): 109, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082331

ABSTRACT

BACKGROUND: Damage in the ischemic core and penumbra after stroke affects patient prognosis. Microglia immediately respond to ischemic insult and initiate immune inflammation, playing an important role in the cellular injury after stroke. However, the microglial heterogeneity and the mechanisms involved remain unclear. METHODS: We first performed single-cell RNA-sequencing (scRNA-seq) and spatial transcriptomics (ST) on middle cerebral artery occlusion (MCAO) mice from three time points to determine stroke-associated microglial subclusters and their spatial distributions. Furthermore, the expression of microglial subcluster-specific marker genes and the localization of different microglial subclusters were verified on MCAO mice through RNAscope and immunofluorescence. Gene set variation analysis (GSVA) was performed to reveal functional characteristics of microglia sub-clusters. Additionally, ingenuity pathway analysis (IPA) was used to explore upstream regulators of microglial subclusters, which was confirmed by immunofluorescence, RT-qPCR, shRNA-mediated knockdown, and targeted metabolomics. Finally, the infarct size, neurological deficits, and neuronal apoptosis were evaluated in MCAO mice after manipulation of specific microglial subcluster. RESULTS: We discovered stroke-associated microglial subclusters in the brains of MCAO mice. We also identified novel marker genes of these microglial subclusters and defined these cells as ischemic core-associated (ICAM) and ischemic penumbra-associated (IPAM) microglia, according to their spatial distribution. ICAM, induced by damage-associated molecular patterns, are probably fueled by glycolysis, and exhibit increased pro-inflammatory cytokines and chemokines production. BACH1 is a key transcription factor driving ICAM generation. In contrast, glucocorticoids, which are enriched in the penumbra, likely trigger IPAM formation, which are presumably powered by the citrate cycle and oxidative phosphorylation and are characterized by moderate pro-inflammatory responses, inflammation-alleviating metabolic features, and myelinotrophic properties. CONCLUSIONS: ICAM could induce excessive neuroinflammation, aggravating brain injury, whereas IPAM probably exhibit neuroprotective features, which could be essential for the homeostasis and survival of cells in the penumbra. Our findings provide a biological basis for targeting specific microglial subclusters as a potential therapeutic strategy for ischemic stroke.


Subject(s)
Brain Ischemia , Stroke , Animals , Mice , Humans , Microglia/metabolism , Stroke/genetics , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Brain Ischemia/genetics , Brain Ischemia/metabolism , Inflammation/genetics , Inflammation/metabolism
6.
J Neuroinflammation ; 20(1): 260, 2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37951917

ABSTRACT

BACKGROUND: Emerging evidence has shown that myeloid cells that infiltrate into the peri-infarct region may influence the progression of ischemic stroke by interacting with microglia. Properdin, which is typically secreted by immune cells such as neutrophils, monocytes, and T cells, has been found to possess damage-associated molecular patterns (DAMPs) properties and can perform functions unrelated to the complement pathway. However, the role of properdin in modulating microglia-mediated post-stroke neuroinflammation remains unclear. METHODS: Global and conditional (myeloid-specific) properdin-knockout mice were subjected to transient middle cerebral artery occlusion (tMCAO). Histopathological and behavioral tests were performed to assess ischemic brain injury in mice. Single-cell RNA sequencing and immunofluorescence staining were applied to explore the source and the expression level of properdin. The transcriptomic profile of properdin-activated primary microglia was depicted by transcriptome sequencing. Lentivirus was used for macrophage-inducible C-type lectin (Mincle) silencing in microglia. Conditioned medium from primary microglia was administered to primary cortex neurons to determine the neurotoxicity of microglia. A series of cellular and molecular biological techniques were used to evaluate the proinflammatory response, neuronal death, protein-protein interactions, and related signaling pathways, etc. RESULTS: The level of properdin was significantly increased, and brain-infiltrating neutrophils and macrophages were the main sources of properdin in the ischemic brain. Global and conditional myeloid knockout of properdin attenuated microglial overactivation and inflammatory responses at the acute stage of tMCAO in mice. Accordingly, treatment with recombinant properdin enhanced the production of proinflammatory cytokines and augmented microglia-potentiated neuronal death in primary culture. Mechanistically, recombinant properdin served as a novel ligand that activated Mincle receptors on microglia and downstream pathways to drive primary microglia-induced inflammatory responses. Intriguingly, properdin can directly bind to the microglial Mincle receptor to exert the above effects, while Mincle knockdown limits properdin-mediated microglial inflammation. CONCLUSION: Properdin is a new medium by which infiltrating peripheral myeloid cells communicate with microglia, further activate microglia, and exacerbate brain injury in the ischemic brain, suggesting that targeted disruption of the interaction between properdin and Mincle on microglia or inhibition of their downstream signaling may improve the prognosis of ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Mice , Animals , Microglia/metabolism , Ischemic Stroke/metabolism , Properdin/metabolism , Properdin/pharmacology , Neuroinflammatory Diseases , Macrophages/metabolism , Infarction, Middle Cerebral Artery/pathology , Brain Injuries/metabolism , Brain Ischemia/metabolism , Mice, Inbred C57BL
7.
PLoS Biol ; 21(7): e3002199, 2023 07.
Article in English | MEDLINE | ID: mdl-37486903

ABSTRACT

Microglia-mediated neuroinflammation is involved in various neurological diseases, including ischemic stroke, but the endogenous mechanisms preventing unstrained inflammation is still unclear. The anti-inflammatory role of transcription factor nuclear receptor subfamily 4 group A member 1 (NR4A1) in macrophages and microglia has previously been identified. However, the endogenous mechanisms that how NR4A1 restricts unstrained inflammation remain elusive. Here, we observed that NR4A1 is up-regulated in the cytoplasm of activated microglia and localizes to processing bodies (P-bodies). In addition, we found that cytoplasmic NR4A1 functions as an RNA-binding protein (RBP) that directly binds and destabilizes Tnf mRNA in an N6-methyladenosine (m6A)-dependent manner. Remarkably, conditional microglial deletion of Nr4a1 elevates Tnf expression and worsens outcomes in a mouse model of ischemic stroke, in which case NR4A1 expression is significantly induced in the cytoplasm of microglia. Thus, our study illustrates a novel mechanism that NR4A1 posttranscriptionally regulates Tnf expression in microglia and determines stroke outcomes.


Subject(s)
Ischemic Stroke , Stroke , Animals , Mice , Transcription Factors , Microglia , Inflammation , RNA, Messenger
8.
iScience ; 26(7): 107268, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37496671

ABSTRACT

Ischemic stroke is the second leading cause of death worldwide, and there are limited effective treatment strategies. QHRD106, a polyethyleneglycol (PEG)-modified long-acting tissue kallikrein preparation, has not been reported previously. In this study, we aimed to investigate the therapeutic effect of QHRD106 in ischemic stroke and its possible mechanism. We found that QHRD106 treatment alleviated brain injury after stroke via bradykinin (BK) receptor B2 (B2R) instead of BK receptor B1 (B1R). Mechanistically, QHRD106 reduced high-mobility group box 1 (HMGB1)-induced apoptosis and inflammation after ischemic stroke in vivo and in vitro. Moreover, we confirmed that QHRD106 reduced the level of acetylated HMGB1 and reduced the binding between heat shock protein 90 alpha family class A member 1 (HSP90AA1) and HMGB1, thus inhibiting the translocation and release of HMGB1. In summary, these findings indicate that QHRD106 treatment has therapeutic potential for cerebral ischemic stroke.

9.
Inflammation ; 46(5): 1832-1848, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37450211

ABSTRACT

Lipid droplets (LDs) were reported to play an important role in the modulation of inflammation and various cellular processes among multiple cell types. However, LDs accumulation, its function and mechanisms of its formation during ischemic stroke remained poorly-identified. In this study, we observed increased LDs accumulation in microglia at the acute stage of ischemic stroke by immunofluorescence and flow cytometry. Transcriptomic analysis indicated that microglia accumulated with LDs were associated with inflammation and phagocytosis. Both inflammatory activation and phagocytosis of tissue debris in microglia could contribute to LDs formation. Moreover, through specific LDs depletion and overload experiments by pharmacological approaches, we proposed that LDs was critical for the maintenance of anti-inflammatory properties of microglia. Furthermore, Atglistatin, a specific adipose triglyceride lipase (ATGL) inhibitor, was shown to prevent proinflammatory cytokines production in primary microglia through decreased LDs lipolysis. After Atglistatin treatment, middle cerebral artery occlusion (MCAO) mice showed decreased infarct volume and improved neurobehavioral performance at the acute stage of stroke. Our findings provided a biological basis for microglial LDs regulation as a potential therapeutic strategy for acute ischemic stroke and uncovered the neuroprotective role of Atglistatin in the treatment of MCAO mice.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Animals , Mice , Microglia/metabolism , Neuroinflammatory Diseases , Up-Regulation , Ischemic Stroke/metabolism , Lipid Droplets/metabolism , Infarction, Middle Cerebral Artery/metabolism , Brain Injuries/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism
10.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37192007

ABSTRACT

Synaptic plasticity impairment plays a critical role in the pathogenesis of Alzheimer's disease (AD), and emerging evidence has shown that microRNAs (miRs) are alternative biomarkers and therapeutic targets for synaptic dysfunctions in AD. In this study, we found that the level of miR-431 was downregulated in the plasma of patients with amnestic mild cognitive impairment and AD. In addition, it was decreased in the hippocampus and plasma of APPswe/PS1dE9 (APP/PS1) mice. Lentivirus-mediated miR-431 overexpression in the hippocampus CA1 ameliorated synaptic plasticity and memory deficits of APP/PS1 mice, while it did not affect amyloid-ß levels. Smad4 was identified as a target of miR-431, and Smad4 knockdown modulated the expression of synaptic proteins, including SAP102, and protected against synaptic plasticity and memory dysfunctions in APP/PS1 mice. Furthermore, Smad4 overexpression reversed the protective effects of miR-431, indicating that miR-431 attenuated synaptic impairment at least partially by Smad4 inhibition. Thus, these results indicated that miR-431/Smad4 might be a potential therapeutic target for AD treatment.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Mice, Transgenic , Alzheimer Disease/drug therapy , MicroRNAs/metabolism , Neuronal Plasticity/genetics , Memory Disorders/genetics
11.
Antioxidants (Basel) ; 12(3)2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36978920

ABSTRACT

The development of angiotensin II (Ang II)-induced cardiomyopathies is reportedly mediated via oxidative stress and inflammation. Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defense, and reactive oxygen species (ROS) can activate the NLRP3 inflammasome. MHRT is a newly discovered lncRNA exhibiting cardioprotective effects, demonstrated by inhibiting myocardial hypertrophy via Brg1 and myocardial apoptosis via Nrf2 upregulation. However, the underlying mechanism of MHRT remains unclear. We explored the potential protective effects of MHRT against Ang II-induced myocardial oxidative stress and NLRP3-mediated inflammation by targeting Nrf2. Chronic Ang II administration induced NLRP3 inflammasome activation (increased NLRP3, caspase-1 and interleukin-1ß expression), oxidative stress (increased 3-nitrotyrosine and 4-hydroxy-2-nonenal), cardiac dysfunction and decreased MHRT and Nrf2 expression. Lentivirus-mediated MHRT overexpression inhibited Ang II (100 nM)-induced oxidative stress and NLRP3 inflammasome activation in AC16 human cardiomyocyte cells. Mechanistically, MHRT overexpression upregulated the expression and function of Nrf2, as determined by the increased transcription of downstream genes HO-1 and CAT, subsequently decreasing intracellular ROS accumulation and inhibiting the expression of thioredoxin-interacting protein (NLRP3 activator) and its direct binding to NLRP3. Accordingly, MHRT could protect against Ang II-induced myocardial injury by decreasing oxidative stress and NLRP3 inflammasome activation via Nrf2 activation.

12.
Transl Stroke Res ; 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36843141

ABSTRACT

Cerebral small vessel disease (CSVD) is the most common progressive vascular disease that causes vascular dementia. Aging and hypertension are major contributors to CSVD, but the pathophysiological mechanism remains unclear, mainly due to the lack of an ideal animal model. Our previous study revealed that vascular smooth muscle cell (VSMC)-specific myosin phosphatase target subunit 1 (MYPT1) knockout (MYPT1SMKO) leads to constant hypertension, prompting us to explore whether hypertensive MYPT1SMKO mice can be considered a novel CSVD animal model. Here, we found that MYPT1SMKO mice displayed age-dependent CSVD-like neurobehaviors, including decreased motion speed, anxiety, and cognitive decline. MYPT1SMKO mice exhibited remarkable white matter injury compared with control mice, as shown by the more prominent loss of myelin at 12 months of age. Additionally, MYPT1SMKO mice were found to exhibit CSVD-like small vessel impairment, including intravascular hyalinization, perivascular space enlargement, and microbleed and blood-brain barrier (BBB) disruption. Last, our results revealed that the brain of MYPT1SMKO mice was characterized by an exacerbated inflammatory microenvironment, which is similar to patients with CSVD. In light of the above structural and functional phenotypes that closely mimic the conditions of human CSVD, we suggest that MYPT1SMKO mice are a novel age- and hypertension-dependent animal model of CSVD.

13.
Adv Sci (Weinh) ; 10(5): e2202976, 2023 02.
Article in English | MEDLINE | ID: mdl-36529961

ABSTRACT

White matter injury (WMI), which reflects myelin loss, contributes to cognitive decline or dementia caused by cerebral vascular diseases. However, because pharmacological agents specifically for WMI are lacking, novel therapeutic strategies need to be explored. It is recently found that adaptive myelination is required for homeostatic control of brain functions. In this study, adaptive myelination-related strategies are applied to explore the treatment for ischemic WMI-related cognitive dysfunction. Here, bilateral carotid artery stenosis (BCAS) is used to model ischemic WMI-related cognitive impairment and uncover that optogenetic and chemogenetic activation of glutamatergic neurons in the medial prefrontal cortex (mPFC) promote the differentiation of oligodendrocyte precursor cells (OPCs) in the corpus callosum, leading to improvements in myelin repair and working memory. Mechanistically, these neuromodulatory techniques exert a therapeutic effect by inducing the secretion of Wnt2 from activated neuronal axons, which acts on oligodendrocyte precursor cells and drives oligodendrogenesis and myelination. Thus, this study suggests that neuromodulation is a promising strategy for directing myelin repair and cognitive recovery through adaptive myelination in the context of ischemic WMI.


Subject(s)
Cognitive Dysfunction , Myelin Sheath , White Matter , Cognitive Dysfunction/etiology , Cognitive Dysfunction/therapy , Ischemia/complications , Myelin Sheath/metabolism , Optogenetics/methods , White Matter/injuries , Mice , Animals
14.
Front Microbiol ; 13: 1031498, 2022.
Article in English | MEDLINE | ID: mdl-36569060

ABSTRACT

Obesity and its complications, including type 2 diabetes, cardiovascular disease, and certain cancers, have posed a significant burden on health and healthcare systems over the years due to their high prevalence and incidence. Gut microbial derivatives are necessary for the regulation of energy metabolism and host immunity, as well as for maintaining homeostasis of the intestinal environment. Gut flora metabolites may be a link between gut microbes and diseases, such as obesity, and help understand why alterations in the microbiota can influence the pathophysiology of human disease. This is supported by emerging evidence that microbial-derived metabolites, such as short-chain fatty acids, bile acids, tryptophan, trimethylamine-N-oxide, and lipopolysaccharides, can be beneficial or detrimental to the host by affecting organs outside the gut, including adipose tissue. Adipose tissue is the largest lipid storage organ in the body and an essential endocrine organ that plays an indispensable role in the regulation of lipid storage, metabolism, and energy balance. Adipose tissue metabolism includes adipocyte metabolism (lipogenesis and lipolysis), thermogenesis, and adipose tissue metabolic maladaptation. Adipose tissue dysfunction causes the development of metabolic diseases, such as obesity. Here, we review the current understanding of how these microbial metabolites are produced and discuss both established mechanisms and the most recent effects of microbial products on host adipose tissue metabolism. We aimed to identify novel therapeutic targets or strategies for the prevention and treatment of obesity and its complications.

15.
Front Pharmacol ; 13: 1004215, 2022.
Article in English | MEDLINE | ID: mdl-36313349

ABSTRACT

Microglia are the resident macrophages in the brain, which play a critical role in post-stroke neuroinflammation. Accordingly, targeting neuroinflammation could be a promising strategy to improve ischemic stroke outcomes. Ethyl ferulate (EF) has been confirmed to possess anti-inflammatory properties in several disease models, including acute lung injury, retinal damage and diabetes-associated renal injury. However, the effects of EF on microglial activation and the resolution of post-stroke neuroinflammation remains unknown. Here, we found that EF suppressed pro-inflammatory response triggered by lipopolysaccharide (LPS) stimulation in primary microglia and BV2 cell lines, as well as post-stroke neuroinflammation in an in vivo transient middle cerebral artery occlusion (tMCAO) stroke model in C57BL/6 mice, consequently ameliorating ischemic brain injury. Furthermore, EF could directly bind and inhibit the activity of monoamine oxidase B (MAO-B) to reduce pro-inflammatory response. Taken together, our study identified a MAO-B inhibitor, Ethyl ferulate, as an active compound with promising potentials for suppressing post-stroke neuroinflammation.

16.
Eur J Pharmacol ; 933: 175242, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36058290

ABSTRACT

Microglia-mediated neuroinflammation plays a vital role in the pathogenesis of ischemic stroke, which serves as a prime target for developing novel therapeutic agent. However, feasible and effective agents for controlling neuroinflammation are scarce. Bergapten were acknowledged to hold therapeutic potential in restricting inflammation in multiple diseases, including peripheral neuropathy, migraine headaches and osteoarthritis. Here, we aimed to investigate the impact of bergapten on microglia-mediated neuroinflammation and its therapeutic potential in ischemic stroke. Our study demonstrated that bergapten significantly reduced the expression of pro-inflammatory cytokines and the activation of NF-κB signaling pathway in LPS-stimulated primary microglia. Mechanistically, bergapten suppressed cellular potassium ion efflux by inhibiting Kv1.3 channel and inhibits the degradation of Carbonyl reductase 1 induced by LPS, which might contribute to the anti-inflammatory effect of bergapten. Furthermore, bergapten suppressed microglial activation and post-stroke neuroinflammation in an experimental stroke model, leading to reduced infarct size and improved functional recovery. Thus, our study identified that bergapten might be a potential therapeutic compound for the treatment of ischemic stroke.


Subject(s)
Brain Injuries , Ischemic Stroke , Kv1.3 Potassium Channel/metabolism , 5-Methoxypsoralen/pharmacology , Anti-Inflammatory Agents/pharmacology , Brain Injuries/metabolism , Carbonyl Reductase (NADPH)/metabolism , Cytokines/metabolism , Humans , Ischemic Stroke/drug therapy , Lipopolysaccharides/pharmacology , Microglia , NF-kappa B/metabolism , Neuroinflammatory Diseases , Potassium/metabolism
17.
CNS Neurosci Ther ; 28(1): 116-125, 2022 01.
Article in English | MEDLINE | ID: mdl-34674376

ABSTRACT

AIMS: Microglia-mediated neuroinflammation plays an important role in the pathological process of ischemic stroke, and the effect of imperatorin on post-stroke neuroinflammation is not fully understood. METHODS: Primary microglia were treated with imperatorin for 2 h followed by LPS (100 ng/ml) for 24 h. The expression of inflammatory cytokines was detected by RT-PCR, ELISA, and Western blot. The activation of MAPK and NF-κB signaling pathways were analyzed by Western blot. The ischemic insult was determined using a transient middle cerebral artery occlusion (tMCAO) model in C57BL/6J mice. Behavior tests were used to assess the neurological deficits of MCAO mice. TTC staining was applied to measure infract volume. RESULTS: Imperatorin suppressed LPS-induced activation of microglia and pro-inflammatory cytokines release and attenuated ischemic injury in MCAO mice. The results of transcriptome sequencing and Western blot revealed that downregulation of MAPK and NF-κB pathways might contribute to the protective effects of imperatorin. CONCLUSIONS: Imperatorin downregulated MAPK and NF-κB signaling pathways and exerted anti-inflammatory effects in ischemic stroke, which indicated that imperatorin might be a potential compound for the treatment of stroke.


Subject(s)
Furocoumarins/pharmacology , Inflammation , Ischemic Stroke , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Signal Transduction/drug effects , Animals , Cytokines/metabolism , Disease Models, Animal , Ischemic Stroke/complications , Ischemic Stroke/drug therapy , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism
18.
Oxid Med Cell Longev ; 2021: 2961079, 2021.
Article in English | MEDLINE | ID: mdl-34824669

ABSTRACT

Ischemic stroke is a severe and acute neurological disorder with limited therapeutic strategies currently available. Oxidative stress is one of the critical pathological factors in ischemia/reperfusion injury, and high levels of reactive oxygen species (ROS) may drive neuronal apoptosis. Rescuing neurons in the penumbra is a potential way to recover from ischemic stroke. Endogenous levels of the potent ROS quencher glutathione (GSH) decrease significantly after cerebral ischemia. Here, we aimed to investigate the neuroprotective effects of γ-glutamylcysteine (γ-GC), an immediate precursor of GSH, on neuronal apoptosis and brain injury during ischemic stroke. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) were used to mimic cerebral ischemia in mice, neuronal cell lines, and primary neurons. Our data indicated that exogenous γ-GC treatment mitigated oxidative stress, as indicated by upregulated GSH and decreased ROS levels. In addition, γ-GC attenuated ischemia/reperfusion-induced neuronal apoptosis and brain injury in vivo and in vitro. Furthermore, transcriptomics approaches and subsequent validation studies revealed that γ-GC attenuated penumbra neuronal apoptosis by inhibiting the activation of protein kinase R-like endoplasmic reticulum kinase (PERK) and inositol-requiring enzyme 1α (IRE1α) in the endoplasmic reticulum (ER) stress signaling pathway in OGD/R-treated cells and ischemic brain tissues. To the best of our knowledge, this study is the first to report that γ-GC attenuates ischemia-induced neuronal apoptosis by suppressing ROS-mediated ER stress. γ-GC may be a promising therapeutic agent for ischemic stroke.


Subject(s)
Dipeptides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Ischemic Stroke/drug therapy , Neurons/drug effects , Oxidative Stress , Reactive Oxygen Species/metabolism , Reperfusion Injury/drug therapy , Animals , Apoptosis , Infarction, Middle Cerebral Artery/complications , Ischemic Stroke/etiology , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Reperfusion Injury/etiology , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Signal Transduction
19.
iScience ; 24(9): 103047, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34553133

ABSTRACT

Vascular smooth muscle cells (VSMCs) have been widely recognized as key players in regulating blood-brain barrier (BBB) function, and their roles are unclear in ischemic stroke. Myosin phosphatase target subunit 1 (MYPT1) is essential for VSMC contraction and maintaining healthy vasculature. We generated VSMC-specific MYPT1 knockout (MYPT1SMKO) mice and cultured VSMCs infected with Lv-shMYPT1 to explore phenotypic switching of VSMCs and the accompanied impacts on BBB integrity. We found that MYPT1 deficiency induced phenotypic switching of synthetic VSMCs, which aggravated BBB disruption. Proteomic analysis identified evolutionarily conserved signaling intermediates in Toll pathways (ECSIT) as a downstream molecule that promotes activation of synthetic VSMCs and contributed to IL-6 expression. Knocking down ECSIT rescued phenotypic switching of VSMCs and BBB disruption. Additionally, inhibition of IL-6 decreased BBB permeability. These findings reveal that MYPT1 deficiency activated phenotypic switching of synthetic VSMCs and induced BBB disruption through ECSIT-IL-6 signaling after ischemic stroke.

20.
J Cell Mol Med ; 25(9): 4408-4419, 2021 05.
Article in English | MEDLINE | ID: mdl-33793066

ABSTRACT

Nuclear factor erythroid 2-related factor (Nrf2) is an important regulator of cellular antioxidant defence. We previously showed that SFN prevented Ang II-induced cardiac damage via activation of Nrf2. However, the underlying mechanism of SFN's persistent cardiac protection remains unclear. This study aimed to explore the potential of SFN in activating cardiac Nrf2 through epigenetic mechanisms. Wild-type mice were injected subcutaneously with Ang II, with or without SFN. Administration of chronic Ang II-induced cardiac inflammatory factor expression, oxidative damage, fibrosis and cardiac remodelling and dysfunction, all of which were effectively improved by SFN treatment, coupled with an up-regulation of Nrf2 and downstream genes. Bisulfite genome sequencing and chromatin immunoprecipitation (ChIP) were performed to detect the methylation level of the first 15 CpGs and histone H3 acetylation (Ac-H3) status in the Nrf2 promoter region, respectively. The results showed that SFN reduced Ang II-induced CpG hypermethylation and promoted Ac-H3 accumulation in the Nrf2 promoter region, accompanied by the inhibition of global DNMT and HDAC activity, and a decreased protein expression of key DNMT and HDAC enzymes. Taken together, SFN exerts its cardioprotective effect through epigenetic modification of Nrf2, which may partially contribute to long-term activation of cardiac Nrf2.


Subject(s)
Angiotensin II/toxicity , Cardiomyopathies/prevention & control , Epigenesis, Genetic , Gene Expression Regulation/drug effects , Isothiocyanates/pharmacology , NF-E2-Related Factor 2/metabolism , Sulfoxides/pharmacology , Animals , Cardiomyopathies/chemically induced , Cardiomyopathies/metabolism , Cardiomyopathies/pathology , Male , Mice , Mice, Inbred C57BL , NF-E2-Related Factor 2/genetics , Oxidative Stress , Vasoconstrictor Agents/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...