Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(23): e2309075, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38597772

ABSTRACT

The improper use and overuse of antibiotics have led to significant burdens and detrimental effects on the environment, food supply, and human health. Herein, a magnetic solid-phase extraction program and an optical immunosensor based on bimetallic Ce/Zr-UiO 66 for the detection of antibiotics are developed. A magnetic Fe3O4@SiO2@Ce/Zr-UiO 66 metal-organic framework (MOF) is prepared to extract and enrich chloramphenicol from fish, wastewater, and urine samples, and a horseradish peroxidase (HRP)-Ce/Zr-UiO 66@bovine serum protein-chloramphenicol probe is used for the sensitive detection of chloramphenicol based on the dual-effect catalysis of Ce and HRP. In this manner, the application of Ce/Zr-UiO 66 in integrating sample pretreatment and antibiotic detection is systematically investigated and the associated mechanisms are explored. It is concluded that Ce/Zr-UiO 66 is a versatile dual-track material exhibiting high enrichment efficiency (6.37 mg g-1) and high sensitivity (limit of detection of 51.3 pg mL-1) for chloramphenicol detection and serving as a multifunctional MOF for safeguarding public health and hygiene.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Metal-Organic Frameworks , Metal-Organic Frameworks/chemistry , Chloramphenicol/analysis , Animals , Humans , Silicon Dioxide/chemistry , Cerium/chemistry , Horseradish Peroxidase/chemistry , Horseradish Peroxidase/metabolism
2.
Food Chem ; 449: 139050, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581779

ABSTRACT

Ensuring the safety of animal-derived foods requires the reliable and swift identification of enrofloxacin residues to monitor the presence of antibiotics. In this regard, we synthesized, tuned, and investigated the optical properties of a bimetallic metal-organic framework (Ce/Zr-UiO 66). The investigation was facilitated by employing a polydopamine-coated pipette tip with high adsorption efficiency, serving as an immunoreactive carrier. Subsequently, an immunofunctionalized variant of Ce/Zr-UiO 66, referred to as Ce/Zr-UiO 66@ Bovine serum albumin-enrofloxacin, was developed as an optical probe for the rapid and sensitive identification of enrofloxacin across a variety of samples. The method can accurately detect enrofloxacin at concentrations as low as 0.12 ng/mL, with a determination time of under 15 min; furthermore, it demonstrates exceptional efficacy when applied to food, environmental, and clinical samples. The implementation of this methodology offers a valuable means for cost-effective, rapid, and on-site enrofloxacin determination.


Subject(s)
Anti-Bacterial Agents , Enrofloxacin , Food Contamination , Metal-Organic Frameworks , Milk , Enrofloxacin/analysis , Metal-Organic Frameworks/chemistry , Animals , Milk/chemistry , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Cattle , Immunoassay/methods , Immunoassay/instrumentation , Immunoassay/economics , Biosensing Techniques/instrumentation , Limit of Detection
3.
J Hazard Mater ; 470: 134150, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552394

ABSTRACT

The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.


Subject(s)
Anti-Bacterial Agents , Chloramphenicol , Fishes , Food Contamination , Chloramphenicol/analysis , Animals , Food Contamination/analysis , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Immunoassay/methods , Adsorption , Solid Phase Extraction/methods , Artificial Intelligence , Biosensing Techniques/methods , Ferrosoferric Oxide/chemistry
4.
J Hazard Mater ; 455: 131573, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37182461

ABSTRACT

Deoxynivalenol is one of the most widely distributed mycotoxins in cereals and poses tremendous threats to the agricultural environment and public health. Therefore, it is particularly important to develop sensitive and interference-resistant deoxynivalenol analysis methods. Here, we establish a "Lollipop" particle counting immunoassay (LPCI) based on antigen-powered CRISPR-Cas12a dual signal amplification. LPCI achieves high sensitivity and accuracy through antigen-powered CRISPR-Cas dual signal amplification combined with particle counting immunoassay. This strategy not only broadens the applicability of the CRISPR-Cas system in the field of non-nucleic acid target detection; it also improves the sensitivity of particle counting immunoassay. The introduction of a polystyrene "lollipop" immunoassay carrier further enables efficiently simultaneous pre-treatment of multiple samples and overcomes complex matrix interference in real samples. The linear detection range of LPCI for deoxynivalenol was 0.1-500 ng/mL with a detection limit of 0.061 ng/mL. The platform greatly broadens the scope of the CRISPR-Cas sensor for the detection of non-nucleic acid hazards in the environment and food samples.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , Agriculture , Edible Grain , Immunoassay , Nucleic Acid Amplification Techniques
5.
Talanta ; 258: 124357, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36870152

ABSTRACT

Aflatoxin M1 (AFM1) contamination poses a serious threat to human health globally. Hence, it is necessary to develop reliable and ultrasensitive methods for the determination of AFM1 residue in food products at low levels. In this study, a novel polystyrene microsphere-mediated optical sensing (PSM-OS) strategy was constructed to solve the problems of low sensitivity and susceptibility to interference from the matrix in AFM1 determination. Polystyrene (PS) microspheres have the advantages of low cost, high stability, and controllable particle size. They can be useful optical signal probes for qualitative and quantitative analyses attributed to the fact that they have strong ultraviolet-visible (UV-vis) characteristic absorption peaks. Briefly, magnetic nanoparticles were modified with the complex of bovine serum protein and AFM1 (MNP150-BSA-AFM1), and biotinylated antibodies of AFM1 (AFM1-Ab-Bio). Meanwhile, PS microspheres were also functionalized with streptavidin (SA-PS950). In the presence of AFM1, a competitive immune reaction was triggered leading to the changes in AFM1-Ab-Bio concentrations on the surface of MNP150-BSA-AFM1. The complex of MNP150-BSA-AFM1-Ab-Bio binds with SA-PS950 to form the immune complexes due to the special binding of biotin and streptavidin. The remaining SA-PS950 in the supernatant was determined by UV-Vis spectrophotometer after magnetic separation, which positively correlated with the concentration of AFM1. This strategy allows for ultrasensitive determination of AFM1 with limits of detection as low as 3.2 pg/mL. It was also successfully validated for AFM1 determination in milk samples, and a high consistency was found with the chemiluminescence immunoassay. Overall, the proposed PSM-OS strategy can be used for the rapid, ultrasensitive, and convenient determination of AFM1, as well as other biochemical analytes.


Subject(s)
Aflatoxin M1 , Milk , Humans , Animals , Milk/chemistry , Aflatoxin M1/analysis , Microspheres , Polystyrenes/analysis , Streptavidin , Food Contamination/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...