Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Exp Cell Res ; 437(1): 113999, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38494067

ABSTRACT

The heightened prevalence and accelerated progression of periodontitis in individuals with diabetes is primarily attributed to inflammatory responses in human periodontal ligament cells (HPDLCs). This study is aimed at delineating the regulatory mechanism of nucleotide-binding oligomerization domain-like receptors (NLRs) in mediating inflammation incited by muramyl dipeptide (MDP) in HPDLCs, under the influence of advanced glycation end products (AGEs), metabolic by-products associated with diabetes. We performed RNA-seq in HPDLCs induced by AGEs treatment and delineated activation markers for the receptor of AGEs (RAGE). It showed that advanced glycation end products modulate inflammatory responses in HPDLCs by activating NLRP1 and NLRP3 inflammasomes, which are further regulated through the NF-κB signaling pathway. Furthermore, AGEs synergize with NOD2, NLRP1, and NLRP3 inflammasomes to augment MDP-induced inflammation significantly.


Subject(s)
Diabetes Mellitus , NF-kappa B , Humans , NF-kappa B/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , AMP-Activated Protein Kinases/metabolism , Periodontal Ligament/metabolism , Signal Transduction , Inflammation , Glycation End Products, Advanced/pharmacology
2.
J Cosmet Dermatol ; 23(1): 271-283, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37464738

ABSTRACT

BACKGROUND: Adipose stem cell-derived exosomes (ADSC-EXO) and botulinum toxin type A (BTX-A) individually showed a therapeutic effect on skin wound repair. AIMS: This study investigated their synergistic effect on promoting skin wound healing in vitro and in vivo and the underlying molecular events. METHODS: ADSCs were isolated from Sprague-Dawley (SD) rats to obtain ADSC-EXO by ultrafiltration and ultracentrifugation and were confirmed using nanoparticle tracking analysis and transmission electron microscopy. Human skin fibroblasts (HSF) were cultured and treated with or without ADSC-EXO, BTX-A, or their combination. Changes in cell phenotypes and protein expression were analyzed using different in vitro assays, and a rat skin wound model was used to assess their in vivo effects. RESULTS: The isolated ADSC-EXO from primarily cultured ADSCs had a circular vesicle shape with a 30-180 nm diameter. Treatment of HSF with ADSC-EXO and/or BTX-A significantly accelerated HSF migration in vitro and skin wound healing in a rat model. Moreover, ADSC-EXO plus BTX-A treatment dramatically induced VEGFA expression but reduced COL III and COL I levels in vivo. ADSC-EXO and/or BTX-A treatment significantly upregulated TGF-ß3 expression on Day 16 after surgery but downregulated TGF-ß1 expression, suggesting that ADSC-EXO plus BTX-A promoted skin wound healing and reduced inflammatory cell infiltration. CONCLUSIONS: The ADSC-EXO plus BTX-A treatment demonstrated a synergistic effect on skin wound healing through upregulation of VEGF expression and the TGF-ß3/TGF-ß1 and COL III/COL I ratio.


Subject(s)
Botulinum Toxins, Type A , Exosomes , Rats , Humans , Animals , Botulinum Toxins, Type A/pharmacology , Exosomes/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism , Rats, Sprague-Dawley , Stem Cells , Adipose Tissue
3.
Front Immunol ; 13: 975926, 2022.
Article in English | MEDLINE | ID: mdl-36189243

ABSTRACT

Immune dysfunction has been proposed as a factor that may contribute to disease progression. Emerging evidence suggests that immunotherapy aims to abolish cancer progression by modulating the balance of the tumor microenvironment. 4-1BB (also known as CD137 and TNFRS9), a member of tumor necrosis factor receptor superfamily, has been validated as an extremely attractive and promising target for immunotherapy due to the upregulated expression in the tumor environment and its involvement in tumor progression. More importantly, 4-1BB-based immunotherapy approaches have manifested powerful antitumor effects in clinical trials targeting 4-1BB alone or in combination with other immune checkpoints. In this review, we will summarize the structure and expression of 4-1BB and its ligand, discuss the role of 4-1BB in the microenvironment and tumor progression, and update the development of drugs targeting 4-1BB. The purpose of the review is to furnish a comprehensive overview of the potential of 4-1BB as an immunotherapeutic target and to discuss recent advances and prospects for 4-1BB in cancer therapy.


Subject(s)
Immunotherapy , Neoplasms , Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology , Humans , Ligands , Receptors, Tumor Necrosis Factor , Tumor Microenvironment
4.
In Vitro Cell Dev Biol Anim ; 58(8): 702-711, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36121575

ABSTRACT

B cells play a role in the progression of multiple sclerosis (MS) and are closely related to Fc-receptor like-3 (FCRL3), but little is known about FCRL3 in B cells and MS. Activation of TLR9 in B cells with CpG found that CpG promoted FCRL3 expression in a dose- and time-dependent manner. CpG significantly activated ERK1/2, p38, and STAT3 pathways, and FCRL3 overexpression further promoted the activation of these pathways, while FCRL3 siRNA significantly inhibited the activation of these pathways by CpG. CpG stimulation significantly promoted the viability of B cells, inhibited cell apoptosis, and enhanced the production of antibodies and secretion of IL-10 by B cells. FCRL3 siRNA blocked most of the above regulatory effects of CpG, but promoted the further production of antibodies by B cells. FCRL3 overexpression enhanced the pro-survival, anti-apoptotic, and IL-10-inducing effects of CpG, but inhibited the effect of CpG on promoting antibody production. After adding inhibitors of ERK1/2, p38, and STAT3 pathways, respectively, the effects of CpG on promoting cell viability, antibody production, and IL-10 secretion were significantly reduced, but the anti-apoptotic effect of CpG was only affected by the blockade of STAT3 pathway. In addition, FCRL3 regulated B cell antibody and IL-10 secretion mainly through its ITIMs. These results indicate that TLR9 activation affects B cell proliferation, apoptosis, antibody production, and IL-10 secretion by upregulating FCRL3 expression, and is associated with ERK1/2, p38, and STAT3 pathways. Therefore, FCRL3 may be an important target for the diagnosis and treatment of B cell-related diseases.


Subject(s)
Interleukin-10 , Toll-Like Receptor 9 , Apoptosis/genetics , Cell Survival , MAP Kinase Signaling System , RNA, Small Interfering/metabolism , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
5.
Pharm Biol ; 59(1): 1415-1424, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34689683

ABSTRACT

CONTEXT: Tadehaginoside, an active ingredient isolated from Tadehagi triquetrum (Linn.) Ohashi (Leguminosae), exhibited various biological activities. However, the pharmacokinetics and tissue distribution which affect tadehaginoside's therapeutic actions and application remain elusive. OBJECTIVE: To clarify the metabolism of tadehaginoside in vivo. MATERIALS AND METHODS: The pharmacokinetics and tissue distribution of tadehaginoside and its metabolite p-hydroxycinnamic acid (HYD) were investigated using LC-MS/MS. Pharmacokinetic parameters were determined in 10 Sprague-Dawley rats divided into two groups, the intravenous group (5 mg/kg) and the oral group (25 mg/kg). For the tissue-distribution study, 20 rats were intravenously given tadehaginoside (5 mg/kg) before the experiment (n = 4). Biological samples were collected before drug administration (control group) and after drug administration. RESULTS: The linearity, accuracy, precision, stability, recovery and matrix effect of the method were well-validated and the results satisfied the requirements of biological sample measurement. Treatment with tadehaginoside via intragastric and intravenous administration, the calculated Cmax in rats was 6.01 ± 2.14 ng/mL and 109.77 ± 4.29 ng/mL, and Tmax was 0.025 ± 0.08 h and 0.08 h, respectively. The results indicated that the quick absorption of tadehaginoside was observed following intravenous administration, and tadehaginoside in plasma of rats with intragastric administration showed relatively low concentration may be due to the formation of its metabolite. Tissue-distribution study indicated that kidney and spleen were the major distribution organs for tadehaginoside in rats and there was no long-term accumulation in most tissues. DISCUSSION AND CONCLUSION: These results could provide clues for exploring the bioactivity of tadehaginoside based on its pharmacokinetic characteristics.


Subject(s)
Chromatography, High Pressure Liquid/methods , Coumaric Acids/pharmacokinetics , Glucosides/pharmacokinetics , Tandem Mass Spectrometry/methods , Animals , Coumaric Acids/analysis , Glucosides/analysis , Male , Rats , Rats, Sprague-Dawley , Reproducibility of Results , Tissue Distribution
6.
BMC Complement Med Ther ; 21(1): 202, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34284768

ABSTRACT

BACKGROUND: Gout is initiated by the precipitation of monosodium urate (MSU) crystals within the joints and soft tissues, and it can eventually cause acute or chronic arthritis. MSU crystals trigger, amplify, and maintain a strong inflammatory response through promoting proinflammatory activity. In this study, the therapeutic effects of Stephania hainanensis (S. hainanensis) total alkaloid (SHA) were tested and evaluated on MSU-induced acute gouty arthritis in a mouse model. METHODS: After oral administration of SHA (10 or 20 mg/kg) or the antigout medicine colchicine (0.5 mg/kg) once daily for 3 consecutive days, MSU crystals suspended in saline (2.5 mg/50 µl) were intradermally injected into the right paw of the mice. Then, SHA and colchicine were administered for another 2 days. During this period, swelling of the ankle and clinical scores were measured at 12, 24, and 48 h postinjection. After the mice were euthanized, inflammatory cytokine expression and paw tissue inflammation-related gene and protein expression, and a histopathological analysis was performed. RESULTS: SHA had obvious therapeutic effects on MSU-induced acute gouty arthritis in mice. SHA alleviated ankle swelling and inhibited the production of cytokines, such as IL-1ß and TNF-α. In addition, NLRP3, Caspase-1 and IL-1ß, which are activated by MSU were also suppressed by SHA. The histological evaluation showed that SHA relieved the infiltration of inflammation around the ankle. CONCLUSIONS: These results suggest that SHA is capable of anti-inflammatory activities and may be useful for treating gouty arthritis.


Subject(s)
Alkaloids/pharmacology , Anti-Inflammatory Agents/pharmacology , Antioxidants/toxicity , Arthritis, Gouty/chemically induced , Stephania/metabolism , Uric Acid/toxicity , Animals , Antioxidants/pharmacology , Mice
7.
BMC Complement Med Ther ; 20(1): 330, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33153455

ABSTRACT

BACKGROUND: We evaluated the long-term cost-effectiveness of antihypertensive traditional Chinese medicines (TCMs) and to compare the cost-effectiveness of a combined treatment consisting of compound Apocynum tablets and Nifedipine sustained-release tablets with the cost-effectiveness of treatment with Nifedipine sustained-release tablets alone. METHODS: A Markov model was used to simulate the potential incremental cost-effectiveness per quality-adjusted life year (QALY) to be gained from compound Apocynum tablets and Nifedipine sustained-release tablets compared with Nifedipine sustained-release tablets alone. Model parameter estimates were informed by previously published studies. The direct medical costs of outpatients with hypertension were estimated from the health care provider's perspective. A 5% annual discount rate was applied to both costs and QALYs. RESULTS: TCMs combined with Nifedipine sustained-release tablets group generated a total 20-year cost of 11,517.94 RMB (US $1739.87), whereas Nifedipine sustained-release tablets alone group resulted in a 20-year cost of 7253.71 RMB (US $1095.73). TCMs combined with Nifedipine sustained-release tablets group resulted in a generation of 12.69 QALYs, whereas Nifedipine sustained-release tablets alone group resulted in 12.50. The incremental cost-utility ratio was 22,443.32 RMB (US $3390.23) per QALY. Considering the threshold of 1 GDP per capita in China in 2018 (US $9764.95), the combination of compound Apocynum tablets and Nifedipine sustained-release tablets was a cost-effective strategy. One-way and probabilistic sensitivity analysis showed unchanged results over an acceptable range. CONCLUSIONS: Combining Traditional Chinese Medicines with chemical medicines is more cost-effective strategy in the treatment of hypertension.


Subject(s)
Antihypertensive Agents/economics , Apocynum , Hypertension/drug therapy , Medicine, Chinese Traditional/economics , Nifedipine/economics , Antihypertensive Agents/therapeutic use , Cost-Benefit Analysis , Delayed-Action Preparations , Drug Therapy, Combination , Humans , Medicine, Chinese Traditional/methods , Nifedipine/therapeutic use , Quality-Adjusted Life Years , Tablets
8.
Cell Biol Int ; 44(9): 1811-1819, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32374464

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system that is caused by the interaction of genetic and environmental factors. Current studies have shown that Fc-receptor like-3 (FCRL3) is closely related to MS, but the specific role of FCRL3 in MS has not yet been clarified. This study further found that FCRL3 and interleukin 10 (IL-10) expression was downregulated in MS patients, but the expression of these proteins was higher in the remission phase than that in the acute phase. The C allele of rs7528684 was associated with MS, and the CC genotype could lead to the upregulation of FCRL3 expression and the increase in IL-10 secretion. Further in vitro experiments with B cells found that lipopolysaccharide (LPS) promoted FCRL3 expression in a dose- and time-dependent manner, thereby promoting IL-10 secretion. LPS regulated Src homology region 2 domain-containing phosphatase-1 (SHP-1) expression and p38 mitogen-activated protein kinase (MAPK) pathway activation through FCRL3, and FCRL3 upregulated the SHP-1 expression and p38 phosphorylation levels. When SHP-1 small interfering RNA or a p38 pathway inhibitor was added, the effect of FCRL3 on IL-10 secretion was significantly inhibited. In addition, FCRL3 inhibited the secretion of inflammatory factors (tumor necrosis factor-α, IL-1ß, IL-6, and IL-8); after inhibiting the expression of IL-10, the abovementioned effects of FCRL3 were blocked. These results suggest that FCRL3 can activate the SHP-1 and p38 MAPK pathways and then promote the secretion of IL-10 in B cells, thus inhibiting the secretion of inflammatory factors. Therefore, FCRL3 may play an immunoprotective role in MS, and it will be an effective target for the diagnosis and treatment of MS.


Subject(s)
Multiple Sclerosis/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Immunologic/genetics , Adult , B-Lymphocytes/metabolism , Cytokines/metabolism , Female , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/adverse effects , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Male , Middle Aged , Multiple Sclerosis/metabolism , Phosphorylation/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/genetics , Receptors, Immunologic/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src Homology Domains/genetics
9.
J Cell Biochem ; 121(1): 49-62, 2020 01.
Article in English | MEDLINE | ID: mdl-31571264

ABSTRACT

Acute coronary syndrome (ACS) is characterized by atherosclerotic plaque rupture with a high incidence of recurrent ischemic events. Several microRNAs are found to be aberrantly expressed in atherosclerotic plaques. This study aims to investigate the effects of microRNA-9 (miR-9) on vulnerable atherosclerotic plaque and vascular remodeling in ACS and underlying mechanisms. Microarray-based gene expression profiling was used to identify differentially expressed genes related to ACS and regulatory miRNAs. Oxidized low-density lipoprotein (lectin-like) receptor 1 (OLR1) was identified to be aberrantly activated in ACS and regulated by miR-9. OLR1 was verified as a target gene of miR-9 by bioinformatics prediction and dual luciferase reporter gene assay. The atherosclerotic models were induced in ApoE-/- mice, in which the agomir or antagomir of miR-9, or small interfering RNA (siRNA) against OLR1 were separately introduced. Serum lipid levels and expression of vascular remodeling and inflammatory response-related factors were determined, respectively. On the basis of the obtained results, in the atherosclerosis mice treated with the agomir of miR-9 and siRNA against OLR1, the p38-mitogen-activated protein kinase (p38MAPK) pathway was inhibited; levels of triglyceride, total cholesterol, low-density lipoprotein cholesterol, tumor necrosis factor-α, interleukin-6, and vascular endothelial growth factor were reduced, but the high-density lipoprotein cholesterol level was increased, along with decreased vulnerable atherosclerotic plaque area and enhanced vascular remodeling. Taken together, these findings suggested an inhibitory role miR-9 acts in the formation of vulnerable atherosclerotic plaques in ACS mice, along with a promoted vascular remodeling, via a negative feedback regulation of OLR1-mediated p38MAPK pathway.


Subject(s)
Acute Coronary Syndrome/metabolism , MicroRNAs/metabolism , Plaque, Atherosclerotic/metabolism , Scavenger Receptors, Class E/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Aorta/metabolism , Atherosclerosis/metabolism , Cholesterol, HDL/metabolism , Disease Models, Animal , Female , Lipids/blood , Lipoproteins, LDL/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout, ApoE , Oligonucleotide Array Sequence Analysis , RNA, Small Interfering/metabolism , Up-Regulation , Vascular Remodeling
10.
Sci Rep ; 9(1): 18248, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31796756

ABSTRACT

Vascular dementia (VaD) is a complex disorder caused by reduced blood flow in the brain. However, there is no effective pharmacological treatment option available until now. Here, we reported that low-dose levamlodipine besylate could reverse the cognitive impairment in VaD mice model of right unilateral common carotid arteries occlusion (rUCCAO). Oral administration of levamlodipine besylate (0.1 mg/kg) could reduce the latency to find the hidden platform in the MWM test as compared to the vehicle group. Furthermore, vehicle-treated mice revealed reduced phospho-CaMKII (Thr286) levels in the hippocampus, which can be partially restored by levamlodipine besylate (0.1 mg/kg and 0.5 mg/kg) treatment. No significant outcome on microglia and astrocytes were observed following levamlodipine besylate treatment. This data reveal novel findings of the therapeutic potential of low-dose levamlodipine besylate that could considerably enhance the cognitive function in VaD mice.


Subject(s)
Amlodipine/administration & dosage , Dementia, Vascular/drug therapy , Niacin/analogs & derivatives , Nootropic Agents/administration & dosage , Amlodipine/pharmacology , Animals , Astrocytes/drug effects , Blood Vessels/drug effects , Disease Models, Animal , Mice , Microglia/drug effects , Niacin/administration & dosage , Niacin/therapeutic use , Nootropic Agents/pharmacology
11.
Artif Cells Nanomed Biotechnol ; 47(1): 2918-2929, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31317777

ABSTRACT

We investigated the occurrence of mesenchymal stem cell (MSC)-derived exosome uptake and retrograde transport at peripheral nerve endings using bone marrow MSCs (bMSCs) transduced with recombinant CD63-green fluorescent protein (GFP) lentiviral plasmid. GFP was used to track the release of bMSC-derived exosomes and the uptake and transport at peripheral nerve terminals, the dorsal root ganglion (DRG), and the spinal cord. In vitro cell culture and injection of a CD63-GFP exosome suspension into the right gastrocnemius muscle of an in vivo rat model were also performed. Fluorescence microscopy of co-cultured CD63-GFP exosomes and SH-SY5Y or BV2 cell lines and primary cultured DRG cells in a separate experiment demonstrated exosome uptake into DRG neurons and glia. Moreover, we observed both retrograde axoplasmic transport and hematogenous transport of exosomes injected into rat models at the DRG and the ipsilateral side of the anterior horn of the spinal cord using fluorescence microscopy, immunohistochemistry, and Western blot analyses. In conclusion, we showed that exosome uptake at peripheral nerve endings and retrograde transport of exosomes to DRG neurons and spinal cord motor neurons in the anterior horn can occur. In addition, our findings propose a novel drug delivery approach for treating neuronal diseases.


Subject(s)
Exosomes/metabolism , Mesenchymal Stem Cells/cytology , Nerve Endings/metabolism , Animals , Biological Transport , Cell Line, Tumor , Ganglia, Spinal/cytology , Humans , Male , Neurons/cytology , Rats
12.
J Stroke Cerebrovasc Dis ; 27(10): 2829-2839, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30093210

ABSTRACT

BACKGROUND: Despite the intense efforts devoted to preventing and treating cerebral ischemia, some individuals will continue to have completed infarctions. Failure of prevention or intervention does not, however, preclude therapeutic approaches to enhance recovery. Our study aims to explore the effect of multimodal rehabilitation program on the motor function recovery of rats with ischemic stroke. METHODS: Rat models of ischemic stroke were established using clean-grade adult male Sprague-Dawley rats. Motor function of rats was scored by the Bederson neurological function, balance beam test, and screen test. Nissl staining was conducted for morphological and structural changes of nerve cells in the arteriae cerebri anterior zone. Immunohistochemistry was applied to detect the expressions of growth-associated protein (GAP-43), synaptophysin (SYN) and Caspase-3, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was carried out in the corpus striatum 21 days after operation; reverse transcription quantitative polymerase chain reaction and Western blot analysis were conducted for testing messager RNA (mRNA) and protein expressions of heat shock protein 70 (Hsp70) and MYC proto-oncogene (c-Myc). RESULTS: Rats receiving multimodal rehabilitation program had lower Bederson neurological function, balance beam, and screen test scores on the 7th, 14th and 21st days after operation; more number of neurons surviving in the arteriae cerebri anterior zone at each time point after operation, higher GAP-43 expression on the 7th and 14th days after operation, and higher SYN expression on the 14th and 21st days after operation, on the 7th, 14th and 21st days after operation, higher mRNA and protein expressions of HSP70 and C-MYC, lower Caspase-3 positive expression and TUNEL positive stained cells. CONCLUSIONS: Multimodal rehabilitation program could promote motor function recovery of rats after ischemic stroke by upregulating GAP-43 and SYN expressions at arteriae cerebri anterior zone and upregulating HSP70 and C-MYC expressions in the brain tissues.


Subject(s)
Brain Ischemia/rehabilitation , Corpus Striatum/metabolism , GAP-43 Protein/metabolism , HSP70 Heat-Shock Proteins/metabolism , Motor Activity , Proto-Oncogene Proteins c-myc/metabolism , Stroke Rehabilitation/methods , Stroke/therapy , Synaptophysin/metabolism , Animals , Apoptosis , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/physiopathology , Combined Modality Therapy , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Disease Models, Animal , GAP-43 Protein/genetics , HSP70 Heat-Shock Proteins/genetics , Male , Neurons/metabolism , Neurons/pathology , Proto-Oncogene Proteins c-myc/genetics , Rats, Sprague-Dawley , Recovery of Function , Stroke/metabolism , Stroke/physiopathology , Synaptophysin/genetics , Time Factors , Up-Regulation
13.
Cell Physiol Biochem ; 47(5): 2018-2030, 2018.
Article in English | MEDLINE | ID: mdl-29969783

ABSTRACT

BACKGROUND/AIMS: Peptidyl-prolyl cis-trans isomerase FKBP25 is a member of the FK506-binding proteins family which has peptidyl-prolyl cis/trans isomerase domain. The biological function and pathophysiologic role of FKBP25 remain elusive. METHODS: The spatio-temporal changes in expression of endothelial FKBP25 upon oxygen-glucose deprivation (OGD) treatment were examined by Western blot and immunofluorescence. The immunoprecipitation and fluorescence resonance energy transfer (FRET) were used to address the interacting proteins with FKBP25. RESULTS: In the present study, nuclear translocation of FKBP25 was observed following OGD in cultured endothelial cells. Intriguingly, FKBP25 nuclear translocation was further validated in peroxynitrite (ONOO-)-treated endothelial cells. Coimmunoprecipitation and FRET data indicated that FKBP25 translocated into the nucleus, in which it interacted with 60S ribosomal protein L7a, while overexpression FKBP25 protect endothelial cells against OGD injury. CONCLUSION: Our findings reveal that the nuclear import of FKBP25 and binding with 60S ribosomal protein L7a are protective stress responses to ischemia/nitrosaive stress injury.


Subject(s)
Cell Nucleus/metabolism , Ribosomal Proteins/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism , Signal Transduction , Stress, Physiological , Tacrolimus Binding Proteins/metabolism , Active Transport, Cell Nucleus , Animals , Cell Hypoxia , Mice
14.
Chin Med J (Engl) ; 131(6): 643-647, 2018 Mar 20.
Article in English | MEDLINE | ID: mdl-29521285

ABSTRACT

BACKGROUND: Multiple sclerosis (MS) is a common central nervous system autoimmune disorder. Increasing number of genome-wide association study (GWAS) analyses hint that MS is strongly associated with genetics. Unfortunately, almost all the GWAS analyses were Caucasian population based. Numbers of risk loci might not be replicated in Chinese MS patients. Hence, we performed a MassArray Assay to genotype the previously reported variants located in the transcription regulation genes in order to elucidate their role in the Chinese MS patients. METHODS: One hundred and forty-two relapsing-remitting MS (RRMS) patients and 301 healthy controls were consecutively collected from September 2, 2008, to June 7, 2013, as stage 1 subjects. Eight reported transcription regulation-related single-nucleotide polymorphisms (SNPs) were genotyped using the Sequenom MassArray system. In stage 2, another 44 RRMS patients and 200 healthy controls were consecutively collected and Sanger sequenced from April 7, 2015, to June 29, 2017, for the validation of positive results in stage 1. Differences in allele and genotype frequencies between patients and healthy controls, odds ratios, and 95% confidence intervals were calculated with the Chi-square test or Fisher's exact test. Hardy-Weinberg equilibrium was tested also using the Chi-square test. RESULTS: In stage 1 analysis, we confirmed only one previously reported risk variant, rs11129295 in EOMES gene. We found that the frequency of T/T genotype was much higher in MS group (χ2 = 10.251, P = 0.005) and the T allele of rs11129295 increased the risk of MS (χ2 = 10.022, P = 0.002). In stage 2 and combined analyses, the T allele of rs11129295 still increased the risk of MS (χ2 = 4.586, P = 0.030 and χ2 = 16.378, P = 5.19 × 10-5, respectively). CONCLUSIONS: This study enhances the knowledge that the variant of EOMES is associated with increasing risk in Chinese RRMS patients and provides a potential therapeutic target in RRMS.


Subject(s)
Multiple Sclerosis/genetics , T-Box Domain Proteins/genetics , Adolescent , Adult , Aged , Alleles , Asian People , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Odds Ratio , Polymorphism, Single Nucleotide/genetics , Young Adult
15.
Cell Physiol Biochem ; 45(2): 547-557, 2018.
Article in English | MEDLINE | ID: mdl-29402834

ABSTRACT

BACKGROUND/AIMS: Endothelial cell dysfunction is the principal pathological process underlying atherosclerotic cardiovascular disease. G protein-coupled receptor 124 (GPR124), an orphan receptor in the adhesion GPCR subfamily, promotes angiogenesis in the brain. In the present study, we explored the role of endothelial GPR124 in the development and progression of atherosclerosis in adult mice. METHODS: Using tetracycline-inducible transgenic systems, we generated mice expressing GPR124 specifically under control of the Tie-2 promoter. The animal model of atherosclerosis was constructed by intravenously injecting AAV-PCSK9DY into tetracycline-regulated mice and feeding the mice a high-fat diet for 16 consecutive weeks. Biochemical analysis and immunohistochemistry methods were used to address the role and mechanism of GPR124 in the pathological process of atherosclerosis. RESULTS: Higher TC (total cholesterol) and LDL-C (low density lipoprotein cholesterol) levels in serum and greater lipid deposition in the aortic sinus were found in atherosclerotic mice with GPR124 overexpression, coincident with the elevated proliferation of smooth muscle cells. We observed an elevation of ONOO- in the aortic sinus in this model by using immunofluorescence, and the experiments showed that the specific overexpression of GPR124 in the endothelium induced the up-regulation of CD68, NLRP3 and caspase-1 levels in the aortic sinus. CONCLUSION: The above results indicate that manipulating GPR124 in the endothelium may contribute to delayed pathological progression of atherosclerosis.


Subject(s)
Atherosclerosis/pathology , Receptors, G-Protein-Coupled/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Atherosclerosis/metabolism , Caspase 1/metabolism , Cholesterol/blood , Cholesterol, LDL/blood , Diet, High-Fat , Disease Models, Animal , Humans , Inflammation/etiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Smooth Muscle/cytology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Peroxynitrous Acid/metabolism , Plasmids/genetics , Plasmids/metabolism , Receptors, G-Protein-Coupled/genetics , Sinus of Valsalva/metabolism , Sinus of Valsalva/pathology
16.
CNS Neurosci Ther ; 23(6): 510-517, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28421673

ABSTRACT

AIMS: The receptor tyrosine kinase ErbB4 is present throughout the primate brain and has a distinct functional profile. In this study, we investigate the potential role of endothelial ErbB4 receptor signaling in the brain. RESULTS: Here, we show that the endothelial cell-specific deletion of ErbB4 induces decreased exploratory behavior in adult mice. However, the water maze task for spatial memory and the memory reconsolidation test reveal no changes; additionally, we observe no impairment in CaMKII phosphorylation in Cdh5Cre;ErbB4f/f mice, which indicates that the endothelial ErbB4 deficit leads to decreased exploratory activity rather than direct memory deficits. Furthermore, decreased brain metabolism, which was measured using micro-positron emission tomography, is observed in the Cdh5Cre;ErbB4f/f mice. Consistently, the immunoblot data demonstrate the downregulation of brain Glut1, phospho-ULK1 (Ser555), and TIGAR in the endothelial ErbB4 conditional knockout mice. Collectively, our findings suggest that endothelial ErbB4 plays a critical role in regulating brain function, at least in part, through maintaining normal brain energy homeostasis. CONCLUSIONS: Targeting ErbB4 or the modulation of endothelial ErbB4 signaling may represent a rational pharmacological approach to treat neurological disorders.


Subject(s)
Brain/physiology , Energy Metabolism/genetics , Exploratory Behavior/physiology , Memory Disorders/genetics , Receptor, ErbB-4/deficiency , Animals , Antigens, CD/genetics , Antigens, CD/metabolism , Apoptosis Regulatory Proteins , Autophagy-Related Protein-1 Homolog/metabolism , Avoidance Learning/physiology , Brain/diagnostic imaging , Cadherins/genetics , Cadherins/metabolism , Endothelial Cells/metabolism , Fluorodeoxyglucose F18/pharmacokinetics , Glucose Transporter Type 1/metabolism , Interleukin-1beta/metabolism , Maze Learning/physiology , Memory/physiology , Mice , Mice, Transgenic , Neuregulin-1/metabolism , Phosphoric Monoester Hydrolases , Proteins/metabolism , Receptor, ErbB-4/genetics , Recognition, Psychology/physiology
17.
Asian Pac J Trop Med ; 10(2): 114-120, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28237474

ABSTRACT

OBJECTIVE: To determine the chemical structure of the new compound and investigate the protective effects of Tinosporaic acid A and B towards in-vitro neuro. METHODS: The structures of two new compounds were established by analyzing its 1D and 2D NMR spectra as well as HRESIMS. Their neuroprotective effects with respect to the antioxidant properties were evaluated by radical scavenging tests and hydrogen peroxide-injured oxidative stress model in PC12 cell lines. Cell morphology of treated PC12 cells was observed by phase contrast microscopy. In-vitro MTT assay, lactate dehydrogenase activity assay and oxidative stress markers (intracellular ROS production, MDA level, and caspase-3 activity) were used to evaluate the protective effects against hydrogen peroxide induced cytotoxicity in PC12 cells. RESULTS: The two new compounds, named Tinosporaic acid A and B, were isolated and identified from the stem bark of Tinospora hainanensis. Cell viability studies identified a representative concentration for each extract that was subsequently used to measure oxidative stress markers. Both extracts were able to reverse the oxidative damage caused by hydrogen peroxide, thus promoting PC12 cells survival. The concentration of Tinosporaic acid A and B were 86.34 µg/mL and 22.06 µg/mL respectively, which is neuroprotective for EC50. The results indicated that both of them significantly attenuated hydrogen peroxide-induced neurotoxicity. CONCLUSION: The two new compounds isolated from ethanol extracts of Tinospora hainanensis are the promising natural ones with neuroprotective activity and needed for further research.

18.
Asian Pac J Trop Med ; 9(7): 707-12, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27393103

ABSTRACT

OBJECTIVE: To investigate whether Hainan papayas has protective effects in an Aß40-induced primary neuron injury model and elucidate the underlying molecular mechanism. METHODS: Cultured primary neurons from the dorsal root ganglia (DRG) of Sprague-Dawley (SD) rats were treated with 20 µM Aß40 peptide, 100 µg/L Hainan papaya water extract, peptide plus extract, or culture medium for 24 h. Cell viability was measured by MTT assay, and neuronal apoptosis was evaluated by DAPI staining. ERK signaling pathway-associated molecule activation and changes in Bax expression were analyzed by Western blotting and immunofluorescence. RESULTS: A cell viability rate of (44.11 ± 6.59)% in the Aß40 group was rescued to (79.13 ± 6.64)% by adding different concentrations of the extract. DAPI showed pyknotic nuclei in 39.5% of Aß40-treated cells; the fraction dropped to 17.4% in the 100 µg/L extract group. ERK phosphorylation was observed in the Aß40 group but was ameliorated by pretreatment with 100 µg/L extract. Hainan papaya water extract also prevented Aß40-induced phosphorylation of MEK, RSK1 and CREB associated with ERK signaling and downregulated Bax expression in the neurons. CONCLUSION: The results suggest that Hainan papaya water extract has protective effects on neurons; the mechanism may be related to suppression of ERK signaling activation.

19.
Chin Med J (Engl) ; 128(22): 3062-8, 2015 Nov 20.
Article in English | MEDLINE | ID: mdl-26608987

ABSTRACT

BACKGROUND: Neuromyelitis optica (NMO) and multiple sclerosis (MS) are autoimmune demyelinating diseases of the central nerve system. Interleukin-7 (IL-7) and interleukin-7 receptor alpha (IL-7Rα) were proved to be important in the pathogenesis of both diseases because of the roles they played in the differentiations of autoimmune lymphocytes. The variants of both genes had been identified to be associated with MS susceptibility in Caucasian, Japanese and Korean populations. However, the association of these variants with NMO and MS has not been well studied in Chinese Southeastern Han population. Here, we aimed to evaluate the association of six IL-7 variants (rs1520333, rs1545298, rs4739140, rs6993386, rs7816065, and rs2887502) and one variant of IL-7RA (rs6897932) with NMO and MS among Chinese Han population in southeastern China. METHODS: Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MassARRAY system) and Sanger sequencing were used to determine the variants of IL-7 and IL-7RA in 167 NMO patients, 159 MS patients and 479 healthy controls among Chinese Han population in southeastern China. Samples were excluded if the genotyping success rate <90%. RESULTS: Statistical differences were observed in the genotypes of IL-7 rs1520333 in MS patients and IL-7RA rs6897932 in NMO patients, compared with healthy controls (P = 0.035 and 0.034, respectively). There was a statistically significant difference in the genotypes of IL-7 rs2887502 between MS and NMO patients (P = 0.014). And there were statistically significant differences in the rs6897932 genotypes (P = 0.004) and alleles (P = 0.042) between NMO-IgG positive patients and healthy controls. CONCLUSIONS: The study suggested that among Chinese Han population in southeastern China, the variant of IL-7RA (rs6897932) was associated with NMO especially NMO-IgG positive patients while the variant of IL-7 (rs1520333) with MS patients. And the genotypic differences of IL-7 rs2887502 between MS and NMO indicated the different genetic backgrounds of these two diseases.


Subject(s)
Interleukin-7/genetics , Multiple Sclerosis/genetics , Neuromyelitis Optica/genetics , Adolescent , Adult , Aged , Alleles , Asian People/genetics , Child , China , Female , Gene Frequency/genetics , Genetic Predisposition to Disease/genetics , Genotype , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Receptors, Interleukin-7 , Young Adult
20.
J Asian Nat Prod Res ; 17(11): 1073-8, 2015.
Article in English | MEDLINE | ID: mdl-26268904

ABSTRACT

Two new cassane-type diterpenes, phangininoxys D and E (1 and 2), together with five known compounds were isolated from the seeds of Caesalpinia crista Linn. The structures of these compounds were elucidated by means of various spectroscopic analyses. All the isolated compounds were evaluated for cytotoxicity activities against HeLa, HT-29 and KB cell lines, and compound 7 showed moderate selective activities against KB cell line with an IC50 value of 17.1 µM.


Subject(s)
Antineoplastic Agents, Phytogenic/isolation & purification , Caesalpinia/chemistry , Diterpenes/isolation & purification , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Diterpenes/chemistry , Diterpenes/pharmacology , Drug Screening Assays, Antitumor , HT29 Cells , HeLa Cells , Humans , KB Cells , Molecular Structure , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...