Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.673
Filter
1.
Sci Rep ; 14(1): 10268, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704379

ABSTRACT

Identifying the location of a potential noise source assists in understanding the characteristics of the seismic or volcanic activity and provides valuable information for hazard assessment. Unlike the conventional waveform-based techniques that rebuild the source energy into the possible source region, we apply a simplified method to determine the absolute location of the noise source based on the station-pair time-delays from ambient noise interferometry. Synthetic tests demonstrate the robustness of the method and the locating precision is mainly influenced by the signal-to-noise ratio of the synthetic waveforms, and the higher frequency bandwidth source signals are more likely to result in accurate detection of the source. An application at the Central Tien Shan indicates that our method is capable of locating the known virtual source from the empirical Green's functions. Furthermore, assuming a surface wave velocity, the depth of the source can be generally recovered from ambient noise interferometry in a simplified 3-D homogeneous model. The new method sheds light on applications of ambient noise interferometry for locating potential sources, making it suitable for detecting time-dependent behavior.

2.
J Cancer ; 15(10): 2960-2970, 2024.
Article in English | MEDLINE | ID: mdl-38706915

ABSTRACT

Purpose: Small cell lung cancer (SCLC) is widely recognized for its propensity for early and frequent metastases, which contribute to its status as a refractory malignancy. While the high expression of GPNMB in SCLC is well-documented, the precise correlation between GPNMB expression and the prognosis of SCLC remains undetermined. Methods: HTG Edge-seq was used to screen the differential gene expression between primary SCLC lesions and paired metastatic lymph nodes (LN). The plasma concentration of GPNMB was measured using enzyme-linked immunosorbent assay (ELISA). The relationship between GPNMB concentration and clinical characteristics, as well as overall survival (OS) was assessed. One-to-one propensity score matching (PSM) was performed to reduce bias from confounding factors between groups. The invasive, migratory, proliferative, and apoptotic abilities of SCLC cells were evaluated using migration and matrigel invasion assays, CCK8 assay and flow cytometry respectively. Results: GPNMB exhibited a significant up-regulation in LN compared to primary SCLC lesions as determined by HTG Edge-seq. Furthermore, patients with extensive disease demonstrated a significantly elevated plasma GPNMB concentration compared to those with local disease (P = 0.043). Additionally, patients with a high baseline plasma GPNMB level exhibited a shorter OS (10.32 vs. 16.10 months, P = 0.0299). Following PSM analysis, the statistical significance of the difference between the two groups persisted (9.43 vs. 15.27 months, P = 0.0146). Notably, both univariate and multivariate analyses confirmed that higher expression of GPNMB served as an independent biomarker for OS before PSM (P = 0.033, HR = 2.304) and after PSM (P = 0.003, HR = 6.190). Additionally, our study revealed that the inhibition of GPNMB expression through the use of siRNA effectively diminished the metastatic and proliferative capabilities of SCLC. Furthermore, this inhibition resulted in an enhanced ability to induce apoptosis. Conclusions: In light of our findings, it can be inferred that the expression of GPNMB is linked to metastasis and an unfavorable prognosis, thus suggesting its potential as a novel therapeutic target in the treatment of SCLC.

3.
Adv Sci (Weinh) ; : e2401327, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725147

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease, with limited therapeutic options available. Impaired autophagy resulting from aberrant TRB3/p62 protein-protein interactions (PPIs) contributes to the progression of IPF. Restoration of autophagy by modulating the TRB3/p62 PPIs has rarely been reported for the treatment of IPF. Herein, peptide nanofibers are developed that specifically bind to TRB3 protein and explored their potential as a therapeutic approach for IPF. By conjugating with the self-assembling fragment (Ac-GFFY), a TRB3-binding peptide motif A2 allows for the formation of nanofibers with a stable α-helix secondary structure. The resulting peptide (Ac-GFFY-A2) nanofibers exhibit specific high-affinity binding to TRB3 protein in saline buffer and better capacity of cellular uptake to A2 peptide. Furthermore, the TRB3-targeting peptide nanofibers efficiently interfere with the aberrant TRB3/p62 PPIs in activated fibroblasts and fibrotic lung tissue of mice, thereby restoring autophagy dysfunction. The TRB3-targeting peptide nanofibers inhibit myofibroblast differentiation, collagen production, and fibroblast migration in vitro is demonstrated, as well as bleomycin-induced pulmonary fibrosis in vivo. This study provides a supramolecular method to modulate PPIs and highlights a promising strategy for treating IPF diseases by restoring autophagy.

4.
Int J Clin Pharm ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727779

ABSTRACT

BACKGROUND: Establishing effective pharmacovigilance systems globally is challenging due to the need for comprehensive epidemiological data on pharmacovigilance-related events, particularly in countries at different stages of development. AIM: This study aimed to determine magnitude and drivers of change in the global and regional burden of pharmacovigilance-related events from 1990 to 2019, analyzing variations between age groups and sex, providing data support for policymakers to adjust their pharmacovigilance policies. METHOD: Pharmacovigilance-related events were defined as Adverse Effects of Medical Treatment (AEMT) and Drug Use Disorders (DUD) in the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. Time trend analysis utilized joinpoint regression, age-period-cohort model, and decomposition method. Disease burden was measured in incidence, deaths, and disability-adjusted life years (DALYs). RESULTS: The global burden of pharmacovigilance-related events remained high, driven predominantly by population growth. Children and older adults were identified as particularly susceptible groups. Across various regions and periods of the socio-demographic index (SDI), the risk of death from AEMT showed a decreasing trend. In contrast, the incidence of AEMT and both the incidence and death rates from DUD showed a stable or worsening trend. Significant regional disparities in the burden of these diseases were noted between different SDI levels. CONCLUSION: The study underscores the critical need for robust pharmacovigilance systems worldwide. The observed trends in the burden of pharmacovigilance-related events offer a clear direction for countries to refine and strengthen their pharmacovigilance policies and practices.

5.
Front Cardiovasc Med ; 11: 1368139, 2024.
Article in English | MEDLINE | ID: mdl-38711791

ABSTRACT

Background: Pulmonary hypertension (PH) is a common prognostic factor for acute myocardial infarction (AMI) and its impact may increase when combined with reduced left ventricular function. Methods: This retrospective cohort study enrolled AMI patients with reduced left ventricular function at the First Affiliated Hospital of Xi'an Jiaotong University from January 2018 to January 2022. Basing on the systolic pulmonary artery pressure assessed by echocardiogram, patients were assigned to the PH group and control group. Propensity score matching (PSM) in sex, age and Killip classification was used to match patients between two groups. The primary outcome was defined as 1-year mortality rate, which were obtained from medical records and phone calls. Results: After the PSM, a total of 504 patients were enrolled, with 252 in both groups. No significant difference of the adjusted factors was observed between the two groups. The 1-year mortality rate was significantly higher in the PH group compared with the control group (15.5% vs. 5.3%, P < 0.001). In the cox regression analysis, PH (HR: 2.068, 95% CI: 1.028-4.161, P = 0.042) was identified as an independent risk factor, alongside left ventricular ejection fraction (HR: 0.948; 95% CI: 0.919-0.979; P < 0.001), creatine kinase-MB isoenzymes (HR: 1.002; 95% CI: 1.000-1.003; P = 0.010) and pro-brain natriuretic peptide (HR: 1.000; 95% CI: 1.000-1.000; P = 0.018) for the 1-year mortality in AMI patients with reduced left ventricular function. A nomogram was established using the above factors to predict the 1-year mortality risks in these patients. Conclusion: AMI patients with reduced left ventricular function showed higher 1-year mortality rate when concomitant with PH. Four independent risk factors, including PH, were identified and used to establish a nomogram to predict the 1-year mortality risks in these patients. Clinical Trialsgov ID: NCT06186713.

6.
Hortic Res ; 11(5): uhae066, 2024 May.
Article in English | MEDLINE | ID: mdl-38725461

ABSTRACT

CaWRKY40 coordinately activates pepper immunity against Ralstonia solanacearum infection (RSI) and high temperature stress (HTS), forms positive feedback loops with other positive regulators and is promoted by CaWRKY27b/CaWRKY28 through physical interactions; however, whether and how it is regulated by negative regulators to function appropriately remain unclear. Herein, we provide evidence that CaWRKY40 is repressed by a SALT TOLERANCE HOMOLOG2 in pepper (CaSTH2). Our data from gene silencing and transient overexpression in pepper and epoptic overexpression in Nicotiana benthamiana plants showed that CaSTH2 acted as negative regulator in immunity against RSI and thermotolerance. Our data from BiFC, CoIP, pull down, and MST indicate that CaSTH2 interacted with CaWRKY40, by which CaWRKY40 was prevented from activating immunity or thermotolerance-related genes. It was also found that CaSTH2 repressed CaWRKY40 at least partially through blocking interaction of CaWRKY40 with CaWRKY27b/CaWRKY28, but not through directly repressing binding of CaWRKY40 to its target genes. The results of study provide new insight into the mechanisms underlying the coordination of pepper immunity and thermotolerance.

7.
Environ Sci Technol ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781163

ABSTRACT

Magnetic particles (MPs), with magnetite (Fe3O4) and maghemite (γ-Fe2O3) as the most abundant species, are ubiquitously present in the natural environment. MPs are among the most applied engineered particles and can be produced incidentally by various human activities. Identification of the sources of MPs is crucial for their risk assessment and regulation, which, however, is still an unsolved problem. Here, we report a novel approach, hierarchical classification-aided stable isotopic fingerprinting, to address this problem. We found that naturally occurring, incidental, and engineered MPs have distinct Fe and O isotopic fingerprints due to significant Fe/O isotope fractionation during their generation processes, which enables the establishment of an Fe-O isotopic library covering complex sources. Furthermore, we developed a three-level machine learning model that not only can distinguish the sources of MPs with a high precision (94.3%) but also can identify the multiple species (Fe3O4 or γ-Fe2O3) and synthetic routes of engineered MPs with a precision of 81.6%. This work represents the first reliable strategy for the precise source tracing of particles with multiple species and complex sources.

8.
Article in English | MEDLINE | ID: mdl-38771993

ABSTRACT

Mg3Bi2-based materials are a very promising substitute for current commercial Bi2Te3 thermoelectric alloys. The successful growth of Mg3Bi2-based single crystals with high room-temperature performance is especially significant for practical applications. Previous studies indicated that the effective suppression of Mg defects in Mg3Bi2-based materials was crucial for high performance, which was usually realized by applying excessive Mg during syntheses. However, utilization of excessive Mg generates Mg-rich phases between the crystalline boundaries and is unfavorable for the long-term stability of the materials. Here, bulk single crystals with a low-content Mg component such as Mg3.1Bi1.49Sb0.5Te0.01 were successfully grown. For compensating Mg defects, Li was chosen as the additional electron dopant. The results indicate that Li is a very effective electron compensator when low-concentration doping is applied. For high-concentration doping, Mg atoms in the lattice are substituted by Li, leading to decreased electron concentration again. This strategy is very significant for improving the room-temperature performance of Mg3Bi2-based materials. As a result, a record-high figure of merit of 1.05 at 300 K is achieved for Mg3+xLi0.003Bi1.49Sb0.5Te0.01 single crystals.

9.
Immunobiology ; 229(3): 152810, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38772101

ABSTRACT

BACKGROUND AND AIMS: Activation of the cGAS-STING pathway induces the production of type I interferons, initiating the antiviral immune response, which contributes to the clearance of pathogens. Previous studies have shown that STING agonists promote hepatitis B virus (HBV) clearance; however, few studies have investigated the effect of activating the cGAS-STING pathway in macrophages on HBV. METHODS: The polarization status of HBV particle-stimulated RAW264.7 macrophages was analyzed. After stimulation with HBV particles, the analysis focused on determining whether the DNA sensors in RAW264.7 macrophages recognized the viral double-stranded DNA (dsDNA) and evaluating the activation of the cGAS-STING pathway. Coculture of mouse macrophages and hepatocytes harboring HBV was used to study the antiviral activity of HBV-stimulated RAW264.7 macrophages. RESULTS: After stimulation with HBV particles, HBV relaxed circular DNA (rcDNA) was detected in RAW264.7 macrophages, and the protein expression of phospho-STING, phospho-TBK1, and phospho-IRF3 in the STING pathway was increased, as shown by Western blot analysis, which revealed that M1 polarization of macrophages was caused by increased expression of CD86. RT-PCR analyses revealed elevated expression of M1 macrophage polarization-associated cytokines such as TNFα, IL-1ß, iNOS, and IFNα/ß. In the coculture experiment, both HBsAg and HBeAg expression levels were significantly decreased in AML12-HBV1.3 cells cocultured with the supernatants of HBV-stimulated RAW264.7 macrophages. CONCLUSION: The results suggest that macrophages can endocytose HBV particles. Additionally, viral dsDNA can be recognized by DNA pattern recognition receptors, which in turn activate the cGAS-STING pathway, promoting the M1 polarization of macrophages, while no significant M2 polarization is observed. Macrophages stimulated with HBV particles exhibit enhanced antiviral activity against HBV.

10.
Small ; : e2306692, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773907

ABSTRACT

Charge separation driven by the internal electric field is a research hotspot in photocatalysis. However, it remains challenging to accurately control the electric field to continuously accelerate the charge transfer. Herein, a strategy of constructing a tandem electric field to continuously accelerate charge transfer in photocatalysts is proposed. The plasma electric field, interface electric field, and intramolecular electric field are integrated into the Ag/g-C3N4/urea perylene imide (Ag/PCN/UPDI) ternary heterojunction to achieve faster charge separation and longer carrier lifetime. The triple electric fields function as three accelerators on the charge transport path, promoting the separation of electron-hole pairs, accelerating charge transfer, enhancing light absorption, and increasing the concentration of energetic electrons on the catalyst. The H2 evolution rate of Ag/PCN/UPDI is 16.8 times higher than that of pristine PDI, while the degradation rate of oxytetracycline is increased by 4.5 times. This new strategy will provide a groundbreaking idea for the development of high-efficiency photocatalysts.

11.
Small ; : e2401059, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775621

ABSTRACT

Nanozymes, as substitutes for natural enzymes, are constructed as cascade catalysis systems for biomedical applications due to their inherent catalytic properties, high stability, tunable physicochemical properties, and environmental responsiveness. Herein, a multifunctional nanozyme is reported to initiate cascade enzymatic reactions specific in acidic environments for resistant Helicobacter pylori (H. pylori) targeting eradication. The cobalt-coated Prussian blue analog based FPB-Co-Ch NPs displays oxidase-, superoxide dismutase-, peroxidase-, and catalase- mimicking activities that trigger • O 2 - ${\mathrm{O}}_2^ - {\bm{\ }}$ and H2O2 to supply O2, thereby killing H. pylori in the stomach. To this end, chitosan is modified on the surface to exert bacterial targeted adhesion and improve the biocompatibility of the composite. In the intestinal environment, the cascade enzymatic activities are significantly inhibited, ensuring the biosafety of the treatment. In vitro, sensitive and resistant strains of H. pylori are cultured and the antibacterial activity is evaluated. In vivo, murine infection models are developed and its success is confirmed by gastric mucosal reculturing, Gram staining, H&E staining, and Giemsa staining. Additionally, the antibacterial capacity, anti-inflammation, repair effects, and biosafety of FPB-Co-Ch NPs are comprehensively investigated. This strategy renders a drug-free approach that specifically targets and kills H. pylori, restoring the damaged gastric mucosa while relieving inflammation.

12.
Chem Commun (Camb) ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767007

ABSTRACT

A cationic aggregation-induced emission photosensitizer (AIE-PS) MNNPyBB has been reported to have antibacterial effects against both Gram-positive and Gram-negative bacteria. The bacterial kill mechanism has been investigated and elucidated. In a methicillin-resistant Staphylococcus aureus subcutaneous infection model, wound closure has been achieved with normal re-epithelialization and preserved skin morphology.

13.
Beilstein J Org Chem ; 20: 1099-1110, 2024.
Article in English | MEDLINE | ID: mdl-38774276

ABSTRACT

DFT calculations demonstrate that an isoacenofuran of any size possesses a smaller HOMO-LUMO gap than the corresponding acene bearing an isoelectronic π-system (i.e., the same total number of rings). Isoacenofurans show limited stability due in part to the highly reactive 1,3-carbons of the furan ring. Both 1,3-dimesitylisobenzofuran and 1,3-di(2',4',6'-triethylphenyl)isobenzofuran, each bearing sterically congesting ortho-alkyl groups on their phenyl substituents, have been synthesized and shown to adopt non-planar conformations with the ortho-alkyl groups located above and below the most reactive 1,3-carbons of the furan ring. These bulky substituents provide a strong measure of kinetic stabilization. Thus, 1,3-dimesitylisobenzofuran and 1,3-di(2',4',6'-triethylphenyl)isobenzofuran are significantly less reactive than 1,3-diphenylisobenzofuran toward the strong dienophiles DMAD and acrylonitrile. The insights gained here suggest that the synthesis of large, persistent, kinetically stabilized isoacenofurans with unusually small HOMO-LUMO gaps is achievable. As such, these molecules deserve increased attention as potential p-type organic semiconductors.

14.
Environ Res ; : 119207, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782345

ABSTRACT

The Laptev Sea is a major Marginal Sea in the Western Arctic Ocean. The Arctic amplification brought by global warming influences the hydrological properties of rivers passing through the permafrost zone, which would alter the biological community structure at continental margin. In this study, the structure, assembly, and gene expression of planktonic microbial communities in two estuaries (Protoka Ularovskaya River Estuary, PURE; Lena River Estuary, LRE) of Laptev Sea were examined to investigate the environmental effects of polar rivers. PURE and LRE exhibited distinct environmental characteristics: low temperature and high salinity for PURE, and high temperature and low salinity for LRE, influenced by runoff size. Salinity more closely influenced microbial communities in LRE, with freshwater species playing a significant role in community composition. The findings revealed differences between two estuaries in community composition and diversity. Prokaryotes and microeukaryotes had shown different assembly patterns in response to habitat changes caused by terrestrial freshwater input. Furthermore, compared with the PURE, the co-occurrence and inter-domain network of the LRE, which was more affected by terrestrial input, was more complex and stable. Functional gene prediction revealed a higher gene expression of methane metabolism in LRE than in PURE, particularly those related to methane oxidation, and this conclusion could help better explore the impact of global warming on the methane cycle in the Arctic Marginal Seas. This study explored the increased freshwater runoffs under the background of global warming dramatically affect Arctic microplankton communities from community structure, assembly and gene expression aspects.

15.
J Nanobiotechnology ; 22(1): 274, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773614

ABSTRACT

Small extracellular vesicle-derived microRNAs (sEV-miRNAs) have emerged as promising noninvasive biomarkers for early cancer diagnosis. Herein, we developed a molecular probe based on three-dimensional (3D) multiarmed DNA tetrahedral jumpers (mDNA-Js)-assisted DNAzyme activated by Na+, combined with a disposable paper-based electrode modified with a Zr-MOF-rGO-Au NP nanocomplex (ZrGA) to fabricate a novel biosensor for sEV-miRNAs Assay. Zr-MOF tightly wrapped by rGO was prepared via a one-step method, and it effectively aids electron transfer and maximizes the effective reaction area. In addition, the mechanically rigid, and nanoscale-addressable mDNA-Js assembled from the bottom up ensure the distance and orientation between fixed biological probes as well as avoid probe entanglement, considerably improving the efficiency of molecular hybridization. The fabricated bioplatform achieved the sensitive detection of sEV-miR-21 with a detection limit of 34.6 aM and a dynamic range from100 aM to 0.2 µM. In clinical blood sample tests, the proposed bioplatform showed results highly consistent with those of qRT-PCRs and the signal increased proportionally with the NSCLC staging. The proposed biosensor with a portable wireless USB-type analyzer is promising for the fast, easy, low-cost, and highly sensitive detection of various nucleic acids and their mutation derivatives, making it ideal for POC biosensing.


Subject(s)
Biosensing Techniques , Extracellular Vesicles , Limit of Detection , Metal-Organic Frameworks , MicroRNAs , Paper , Metal-Organic Frameworks/chemistry , Extracellular Vesicles/chemistry , Humans , Biosensing Techniques/methods , DNA, Catalytic/chemistry , Graphite/chemistry , Gold/chemistry , DNA/chemistry , Metal Nanoparticles/chemistry , Nucleic Acid Hybridization , Electrochemical Techniques/methods , Electrodes , Zirconium/chemistry
16.
BMC Plant Biol ; 24(1): 446, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778268

ABSTRACT

Salvia miltiorrhiza is commonly used as a Chinese herbal medicine to treat different cardiovascular and cerebrovascular illnesses due to its active ingredients. Environmental conditions, especially drought stress, can affect the yield and quality of S. miltiorrhiza. However, moderate drought stress could improve the quality of S. miltiorrhiza without significantly reducing the yield, and the mechanism of this initial drought resistance is still unclear. In our study, transcriptome and metabolome analyses of S. miltiorrhiza under different drought treatment groups (CK, A, B, and C groups) were conducted to reveal the basis for its drought tolerance. We discovered that the leaves of S. miltiorrhiza under different drought treatment groups had no obvious shrinkage, and the malondialdehyde (MDA) contents as well as superoxide dismutase (SOD) and peroxidase (POD) activities dramatically increased, indicating that our drought treatment methods were moderate, and the leaves of S. miltiorrhiza began to initiate drought resistance. The morphology of root tissue had no significant change under different drought treatment groups, and the contents of four tanshinones significantly enhanced. In all, 5213, 6611, and 5241 differentially expressed genes (DEGs) were shared in the A, B, and C groups compared with the CK group, respectively. The results of KEGG and co-expression analysis showed that the DEGs involved in plant-pathogen interactions, the MAPK signaling pathway, phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction responded to drought stress and were strongly correlated with tanshinone biosynthesis. Furthermore, the results of metabolism analysis indicated that 67, 72, and 92 differentially accumulated metabolites (DAMs), including fumarate, ferulic acid, xanthohumol, and phytocassanes, which were primarily involved in phenylpropanoid biosynthesis, flavonoid biosynthesis, and diterpenoid biosynthesis pathways, were detected in these groups. These discoveries provide valuable information on the molecular mechanisms by which S. miltiorrhiza responds to drought stress and will facilitate the development of drought-resistant and high-quality S. miltiorrhiza production.


Subject(s)
Droughts , Metabolome , Salvia miltiorrhiza , Transcriptome , Salvia miltiorrhiza/genetics , Salvia miltiorrhiza/metabolism , Salvia miltiorrhiza/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/physiology
17.
Curr Med Imaging ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38693744

ABSTRACT

INTRODUCTION: Angiomatoid fibrous histiocytoma (AFH) is a borderline tumor usually affecting the the children or young adults. 18F-Fluorodexoyglucose (FDG) positron emission tomography/computed tomography (PET/CT) investigations of pulmonary AFH are rare, and there are currently no reports of intense FDG uptake in AFH. CASE REPORT: We report an AFH that occurred in the lung of a 57-year-old woman. She presented with paroxysmal cough and occasional bloodshot sputum. 18FFDG PET/CT revealed a right parahilar nodule with intense FDG-avidity, middle lobe atelectasis, and several bilateral axillary lymph nodes with mild hypermetabolic activity. This patient underwent a right middle lobe lobectomy via video-assisted thoracoscopy. Histopathologically, the diagnosis was pulmonary AFH. She had an uneventful postoperative course, and the bilateral axillary lymph nodes regressed during postoperative follow-up. CONCLUSIONS: The clinical presentation and image findings of patients with primary pulmonary AFH may be potential diagnosis pitfalls. The diagnosis of lymph nodes or distant metastases should be approached with caution. To avoid misdiagnosis, biopsy with histological examination and immunohistochemichal staining should be performed as early as possible.

18.
Cancer Imaging ; 24(1): 61, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741207

ABSTRACT

BACKGROUND: The value of postoperative radiotherapy (PORT) for patients with non-small cell lung cancer (NSCLC) remains controversial. A subset of patients may benefit from PORT. We aimed to identify patients with NSCLC who could benefit from PORT. METHODS: Patients from cohorts 1 and 2 with pathological Tany N2 M0 NSCLC were included, as well as patients with non-metastatic NSCLC from cohorts 3 to 6. The radiomic prognostic index (RPI) was developed using radiomic texture features extracted from the primary lung nodule in preoperative chest CT scans in cohort 1 and validated in other cohorts. We employed a least absolute shrinkage and selection operator-Cox regularisation model for data dimension reduction, feature selection, and the construction of the RPI. We created a lymph-radiomic prognostic index (LRPI) by combining RPI and positive lymph node number (PLN). We compared the outcomes of patients who received PORT against those who did not in the subgroups determined by the LRPI. RESULTS: In total, 228, 1003, 144, 422, 19, and 21 patients were eligible in cohorts 1-6. RPI predicted overall survival (OS) in all six cohorts: cohort 1 (HR = 2.31, 95% CI: 1.18-4.52), cohort 2 (HR = 1.64, 95% CI: 1.26-2.14), cohort 3 (HR = 2.53, 95% CI: 1.45-4.3), cohort 4 (HR = 1.24, 95% CI: 1.01-1.52), cohort 5 (HR = 2.56, 95% CI: 0.73-9.02), cohort 6 (HR = 2.30, 95% CI: 0.53-10.03). LRPI predicted OS (C-index: 0.68, 95% CI: 0.60-0.75) better than the pT stage (C-index: 0.57, 95% CI: 0.50-0.63), pT + PLN (C-index: 0.58, 95% CI: 0.46-0.70), and RPI (C-index: 0.65, 95% CI: 0.54-0.75). The LRPI was used to categorize individuals into three risk groups; patients in the moderate-risk group benefited from PORT (HR = 0.60, 95% CI: 0.40-0.91; p = 0.02), while patients in the low-risk and high-risk groups did not. CONCLUSIONS: We developed preoperative CT-based radiomic and lymph-radiomic prognostic indexes capable of predicting OS and the benefits of PORT for patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Tomography, X-Ray Computed , Humans , Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/surgery , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/mortality , Lung Neoplasms/radiotherapy , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lung Neoplasms/mortality , Male , Female , Tomography, X-Ray Computed/methods , Prognosis , Aged , Middle Aged , Retrospective Studies , Radiotherapy, Adjuvant/methods , Radiomics
19.
Biomaterials ; 309: 122610, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38749307

ABSTRACT

Precise image-guided cancer immunotherapy holds immense potential in revolutionizing cancer treatment. The strategies facilitating activatable imaging and controlled therapeutics are highly desired yet to be developed. Herein, we report a new pyroptosis nanoinducer that integrates aggregation-induced emission luminogen (AIEgen) and DNA methyltransferase inhibitor with hypoxia-responsive covalent organic frameworks (COFs) for advanced image-guided cancer immunotherapy. We first synthesize and compare three donor-acceptor type AIEgens featuring varying numbers of electron-withdrawing units, and find that the incorporation of two acceptors yields the longest response wavelength and most effective photodynamic therapy (PDT) property, surpassing the performance of analogs with one or three acceptor groups. A COF-based nanoplatform containing AIEgen and pyroptosis drug is successfully constructed via the one-pot method. The intra-COF energy transfer significantly quenches AIEgen, in which both fluorescence and PDT properties greatly enhance upon hypoxia-triggered COF degradation. Moreover, the photodynamic process exacerbates hypoxia, accelerating pyroptosis drug release. The nanoagent enables sensitive delineation of tumor site through in situ activatable fluorescence signature. Thanks to the exceptional ROS production capabilities and hypoxia-accelerating drug release, the nanoagent not only inhibits primary tumor growth but also impedes the progression of distant tumors in 4T1 tumor-bearing mice through potent pyroptosis-mediated immune response. This research introduces a novel strategy for achieving activatable phototheranostics and self-accelerating drug release for synergetic cancer immunotherapy.

20.
Int J Biol Macromol ; : 131949, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38749890

ABSTRACT

Granular ß-1,3-glucan extracted from the wall of Ganoderma lucidum spores, named GPG, is a bioregulator. In this study, we investigated the structural, thermal, and other physical properties of GPG. We determined whether GPG ameliorated immunosuppression caused by Gemcitabine (GEM) chemotherapy. Triple-negative breast cancer mice with GPG combined with GEM treatment had reduced tumor burdens. In addition, GEM treatment alone altered the tumor microenvironment(TME), including a reduction in antitumor T cells and a rise in myeloid-derived suppressor cells (MDSC) and regulatory T cells (Tregs). However, combined GPG treatment reversed the tumor immunosuppressive microenvironment induced by GEM. GPG inhibited bone marrow (BM)-derived MDSC differentiation and reversed MDSC expansion induced by conditioned medium (CM) in GEM-treated E0771 cells through a Dectin-1 pathway. In addition, GPG downgraded PD-L1 and IDO1 expression on MDSC while boosting MHC-II, CD86, TNF-α, and IL-6 expression. In conclusion, this study demonstrated that GPG could alleviate the adverse effects induced by GEM chemotherapy by regulating TME.

SELECTION OF CITATIONS
SEARCH DETAIL
...