Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 10(7): 3281-3300, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-31467779

ABSTRACT

There is potential clinical significance in identifying cellular responses in the anterior chamber (AC) of the eye, which can indicate hyphema (an accumulation of red blood cells [RBCs]) or aberrant intraocular inflammation (an accumulation of white blood cells [WBCs]). In this work, we developed a spectroscopic OCT analysis method to differentiate between populations of RBCs and subtypes of WBCs, including granulocytes, lymphocytes and monocytes, both in vitro and in ACs of porcine eyes. We developed an algorithm to track single cells within OCT data sets, and extracted the backscatter reflectance spectrum of each single cell from the detected interferograms using the short-time Fourier transform (STFT). A look-up table of Mie back-scattering spectra was generated and used to correlate the backscatter spectral features of single cells to their characteristic sizes. The extracted size distributions based on the best Mie spectra fit were significantly different between each cell type. We also studied theoretical backscattering models of single RBCs to further validate our experimental results. The described work is a promising step towards clinically differentiating and quantifying AC blood cell types.

2.
J Biophotonics ; 12(7): e201800466, 2019 07.
Article in English | MEDLINE | ID: mdl-30843372

ABSTRACT

Non-invasive photoacoustic tomography (PAT) of mouse brains with intact skulls has been a challenge due to the skull's strong acoustic attenuation, aberration, and reverberation, especially in the high-frequency range (>15 MHz). In this paper, we systematically investigated the impacts of the murine skull on the photoacoustic wave propagation and on the PAT image reconstruction. We studied the photoacoustic acoustic wave aberration due to the acoustic impedance mismatch at the skull boundaries and the mode conversion between the longitudinal wave and shear wave. The wave's reverberation within the skull was investigated for both longitudinal and shear modes. In the inverse process, we reconstructed the transcranial photoacoustic computed tomography (PACT) and photoacoustic microscopy (PAM) images of a point target enclosed by the mouse skull, showing the skull's different impacts on both modalities. Finally, we experimentally validated the simulations by imaging an in vitro mouse skull phantom using representative transcranial PAM and PACT systems. The experimental results agreed well with the simulations and confirmed the accuracy of our forward and inverse models. We expect that our results will provide better understanding of the impacts of the murine skull on transcranial photoacoustic brain imaging and pave the ways for future technical improvements.


Subject(s)
Brain/diagnostic imaging , Photoacoustic Techniques/methods , Skull , Tomography/methods , Animals , Image Processing, Computer-Assisted , Mice , Phantoms, Imaging
3.
Opt Express ; 26(14): 18155-18163, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-30114095

ABSTRACT

The enhancement of light-matter interaction for monolayer graphene is of great importance on many photonic and optoelectronic applications. With the aim of perfect ultraviolet trapping on monolayer graphene, we adopt the design of an all-dielectric nanostructure, in which the magnetic resonance of optical field is combined with an ultraviolet mirror. The physics inside is revealed in comparison with the conventional plasmonic perfect absorber, and various influence factors of absorption bands are systematically investigated. In the ultraviolet range, an optimized absorbance ratio up to 99.7% is reached, which is 10 times more than that of the suspended graphene, and the absorption bands are linearly reconfigurable by angular manipulation of incident light. The scheme for perfect ultraviolet trapping in a sub-nanometer scale paves the way for developing more promising ultraviolet devices based on graphene and potentially other 2D materials.

4.
Med Phys ; 34(11): 4476-83, 2007 Nov.
Article in English | MEDLINE | ID: mdl-18072512

ABSTRACT

Recent advances in murine cardiac studies with three-dimensional (3D) cone beam micro-CT used a retrospective gating technique. However, this sampling technique results in a limited number of projections with an irregular angular distribution due to the temporal resolution requirements and radiation dose restrictions. Both angular irregularity and undersampling complicate the reconstruction process, since they cause significant streaking artifacts. This work provides an iterative reconstruction solution to address this particular challenge. A sparseness prior regularized weighted l2 norm optimization is proposed to mitigate streaking artifacts based on the fact that most medical images are compressible. Total variation is implemented in this work as the regularizer for its simplicity. Comparison studies are conducted on a 3D cardiac mouse phantom generated with experimental data. After optimization, the method is applied to in vivo cardiac micro-CT data.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Algorithms , Animals , Heart/physiology , Humans , Least-Squares Analysis , Mice , Mice, Inbred C57BL , Models, Statistical , Myocardium/metabolism , Phantoms, Imaging , Scattering, Radiation , Time Factors , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...