Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 591
Filter
1.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
2.
Front Pharmacol ; 15: 1378384, 2024.
Article in English | MEDLINE | ID: mdl-38831887

ABSTRACT

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV) has been traditionally treated using glucocorticoids and immunosuppressants. However, these treatment modes are associated with high recurrence AAV rates and adverse reactions. Therefore, treatment strategies for AAV need to be urgently optimized. The efficacy and safety of biological agents in the treatment of vasculitis have been clinically validated. This review comprehensively summarizes the evidence-based support for the clinical use of existing biological agents in AAV. The findings reveal that multiple biological agents not only effectively reduce the adverse reactions associated with glucocorticoids and immunosuppressants but also demonstrate significant therapeutic efficacy. Notably, rituximab, an anti-CD20 antibody, has emerged as a first-line treatment option for AAV. Mepolizumab has shown promising results in relapsed and refractory eosinophilic granulomatosis with polyangiitis. Other biological agents targeting cytokines, complement, and other pathways have also demonstrated clinical benefits in recent studies. The widespread application of biological agents provides new insights into the treatment of AAV and is expected to drive further clinical research. These advancements not only improve patient outcomes but also offer more possibilities and hope in the field of AAV treatment.

3.
Front Pharmacol ; 15: 1377874, 2024.
Article in English | MEDLINE | ID: mdl-38835660

ABSTRACT

Kidney disease has become a global public health problem. Patients with end-stage kidney disease must rely on dialysis or undergo renal transplantation, placing heavy burdens on their families and society. Therefore, it is important to develop new therapeutic targets and intervention strategies during early stages of chronic kidney disease. The widespread application of liquid biopsy has led to an increasing number of studies concerning the roles of cell-free DNA (cfDNA) in kidney disease. In this review, we summarize relevant studies concerning the roles of cfDNA in kidney disease and describe various strategies for targeted removal of cfDNA, with the goal of establishing novel therapeutic approaches for kidney disease.

4.
Front Med (Lausanne) ; 11: 1403189, 2024.
Article in English | MEDLINE | ID: mdl-38846147

ABSTRACT

Purpose: The objective of this investigation was to construct and validate a nomogram for prognosticating cancer-specific survival (CSS) in patients afflicted with gastrointestinal stromal tumor (GIST) at 3-, 5-, and 8-years post-diagnosis. Methods: Data pertaining to patients diagnosed with GIST were acquired from the Surveillance, Epidemiology, and End Results (SEER) database. Through random selection, a training cohort (70%) and a validation cohort (30%) were established from the patient population. Employing a backward stepwise Cox regression model, independent prognostic factors were identified. Subsequently, these factors were incorporated into the nomogram to forecast CSS rates at 3-, 5-, and 8-years following diagnosis. The nomogram's performance was assessed using indicators such as the consistency index (C-index), the area under the time-dependent receiver operating characteristic curve (AUC), the net reclassification improvement (NRI), the integrated discrimination improvement (IDI), calibration curves, and decision-curve analysis (DCA). Results: This investigation encompassed a cohort of 3,062 GIST patients. By analyzing the Cox regression model within the training cohort, nine prognostic factors were identified: age, sex, race, marital status, AJCC (American Joint Committee on Cancer) stage, surgical status, chemotherapy status, radiation status, and income status. The nomogram was subsequently developed and subjected to both internal and external validation. The nomogram exhibited favorable discrimination abilities, as evidenced by notably high C-indices and AUC values. Calibration curves confirmed the nomogram's reliability. Moreover, the nomogram outperformed the AJCC model, as demonstrated by enhanced NRI and IDI values. The DCA curves validated the clinical utility of the nomogram. Conclusion: The present study has successfully constructed and validated the initial nomogram for predicting prognosis in GIST patients. The nomogram's performance and practicality suggest its potential utility in clinical settings. Nevertheless, further external validation is warranted.

5.
Adv Sci (Weinh) ; : e2306912, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775007

ABSTRACT

Decreased plasma spermine levels are associated with kidney dysfunction. However, the role of spermine in kidney disease remains largely unknown. Herein, it is demonstrated that spermine oxidase (SMOX), a key enzyme governing polyamine metabolism, is predominantly induced in tubular epithelium of human and mouse fibrotic kidneys, alongside a reduction in renal spermine content in mice. Moreover, renal SMOX expression is positively correlated with kidney fibrosis and function decline in patients with chronic kidney disease. Importantly, supplementation with exogenous spermine or genetically deficient SMOX markedly improves autophagy, reduces senescence, and attenuates fibrosis in mouse kidneys. Further, downregulation of ATG5, a critical component of autophagy, in tubular epithelial cells enhances SMOX expression and reduces spermine in TGF-ß1-induced fibrogenesis in vitro and kidney fibrosis in vivo. Mechanically, ATG5 readily interacts with SMOX under physiological conditions and in TGF-ß1-induced fibrogenic responses to preserve cellular spermine levels. Collectively, the findings suggest SMOX/spermine axis is a potential novel therapy to antagonize renal fibrosis, possibly by coordinating autophagy and suppressing senescence.

6.
Int J Biol Macromol ; 270(Pt 2): 132370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763253

ABSTRACT

BACKGROUND: Polysaccharides from Grifola frondosa(GFP) have gained worldwide attention owing to their promising biological activities and potential health benefits. PURPOSE: This study aimed to investigate the effects of GFP on alleviation of osteoporosis in ovariectomized (OVX) mice and examine the underlying mechanism. METHOD: A mouse model of postmenopausal osteoporosis was established by OVX method, Forty eight C57BL/6 female mice were randomly divided into Normal group, OVX alone (Model group, n = 8), OVX + 10 mg/kg GFP (GFP-L group, n = 8), OVX + 20 mg/kg GFP (GFP-M group, n = 8), OVX + 40 mg/kg GFP (GFP-H group, n = 8), OVX + 10 mg/kg Estradiol valerate (Positive group, n = 8). RESULTS: The results showed that compared with Model group, the concentrations of interleukin (IL)-1ß, interleukin (IL)-6 and Tumor necrosis factor-α (TNF-α) were significantly reduced, the activity of superoxide dismutase (SOD) and glutathione (GSH) were significantly increased, the content of myeloperoxidase (MPO) and malondialdehyde (MDA) were significantly reduced, and the proteins levels of PINK1, Parkin, Beclin-1 and LC3-II were significantly decreased in the GFP groups. CONCLUSION: This study demonstrates that GFP alleviates ovariectomy-induced osteoporosis via reduced secretion of inflammatory cytokines, improvement in the oxidative stress status in the body, and inhibition of the PINK1/Parkin signaling pathway.


Subject(s)
Grifola , Inflammation , Osteoporosis , Ovariectomy , Oxidative Stress , Protein Kinases , Signal Transduction , Ubiquitin-Protein Ligases , Animals , Ovariectomy/adverse effects , Oxidative Stress/drug effects , Female , Mice , Signal Transduction/drug effects , Osteoporosis/drug therapy , Osteoporosis/etiology , Osteoporosis/prevention & control , Osteoporosis/metabolism , Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Ubiquitin-Protein Ligases/metabolism , Grifola/chemistry , Mice, Inbred C57BL , Cytokines/metabolism , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Disease Models, Animal
7.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(5): 499-505, 2024 May 15.
Article in Chinese | MEDLINE | ID: mdl-38802911

ABSTRACT

OBJECTIVES: To summarize the clinical data of 7 children with activated phosphoinositide 3-kinase delta syndrome (APDS) and enhance understanding of the disease. METHODS: A retrospective analysis was conducted on clinical data of 7 APDS children admitted to Hunan Provincial People's Hospital from January 2019 to August 2023. RESULTS: Among the 7 children (4 males, 3 females), the median age of onset was 30 months, and the median age at diagnosis was 101 months. Recurrent respiratory tract infections, hepatosplenomegaly, and multiple lymphadenopathy were observed in all 7 cases. Sepsis was observed in 5 cases, otitis media and multiple caries were observed in 3 cases, and diarrhea and joint pain were observed in 2 cases. Lymphoma and systemic lupus erythematosus were observed in 1 case each. Fiberoptic bronchoscopy was performed in 4 cases, revealing scattered nodular protrusions in the bronchial lumen. The most common respiratory pathogen was Streptococcus pneumoniae (4 cases). Six patients had a p.E1021K missense mutation, and one had a p.434-475del splice site mutation. CONCLUSIONS: p.E1021K is the most common mutation site in APDS children. Children who present with one or more of the following symptoms: recurrent respiratory tract infections, hepatosplenomegaly, multiple lymphadenopathy, otitis media, and caries, and exhibit scattered nodular protrusions on fiberoptic bronchoscopy, should be vigilant for APDS. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(5): 499-505.


Subject(s)
Class I Phosphatidylinositol 3-Kinases , Humans , Female , Male , Child, Preschool , Child , Class I Phosphatidylinositol 3-Kinases/genetics , Retrospective Studies , Respiratory Tract Infections , Mutation , Primary Immunodeficiency Diseases/genetics , Infant
8.
Kidney Int ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789037

ABSTRACT

Persistently elevated glycolysis in kidney has been demonstrated to promote chronic kidney disease (CKD). However, the underlying mechanism remains largely unclear. Here, we observed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key glycolytic enzyme, was remarkably induced in kidney proximal tubular cells (PTCs) following ischemia-reperfusion injury (IRI) in mice, as well as in multiple etiologies of patients with CKD. PFKFB3 expression was positively correlated with the severity of kidney fibrosis. Moreover, patients with CKD and mice exhibited increased urinary lactate/creatine levels and kidney lactate, respectively. PTCs-specific deletion of PFKFB3 significantly reduced kidney lactate levels, mitigated inflammation and fibrosis, and preserved kidney function in the IRI mouse model. Similar protective effects were observed in mice with heterozygous deficiency of PFKFB3 or those treated with a PFKFB3 inhibitor. Mechanistically, lactate derived from PFKFB3-mediated tubular glycolytic reprogramming markedly enhanced histone lactylation, particularly H4K12la, which was enriched at the promoter of NF- κB signaling genes like Ikbkb, Rela, and Relb, activating their transcription and facilitating the inflammatory response. Further, PTCs-specific deletion of PFKFB3 inhibited the activation of IKKß, I κ B α, and p65 in the IRI kidneys. Moreover, increased H4K12la levels were positively correlated with kidney inflammation and fibrosis in patients with CKD. These findings suggest that tubular PFKFB3 may play a dual role in enhancing NF- κB signaling by promoting both H4K12la-mediated gene transcription and its activation. Thus, targeting the PFKFB3-mediated NF- κB signaling pathway in kidney tubular cells could be a novel strategy for CKD therapy.

9.
ACS Appl Mater Interfaces ; 16(21): 27831-27840, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38757708

ABSTRACT

Electro-optical synergy has recently been targeted to improve the separation of hot carriers and thereby further improve the efficiency of plasmon-mediated chemical reactions (PMCRs). However, the electro-optical synergy in PMCRs needs to be more deeply understood, and its contribution to bond dissociation and product selectivity needs to be clarified. Herein, the electro-optical synergy in plasmon-mediated reduction of p-bromothiophenol (PBTP) was studied on a plasmonic nanostructured silver electrode using in situ Raman spectroscopy and theoretical calculations. It was found that the electro-optical synergy-induced enhancements in the cleavage of carbon-bromine bonds, reaction rate, and product selectivity (4,4'-biphenyl dithiol vs thiophenol) were largely affected by the applied bias, laser wavelength, and laser power. The theoretical simulation further clarified that the strong electro-optical synergy is attributed to the matching of energy band diagrams of the plasmonic silver with those of the adsorbed PBTP molecules. A deep understanding of the electro-optical synergy in PBTP reduction and the clarification of the mechanism will be highly beneficial for the development of other highly efficient PMCRs.

10.
Article in English | MEDLINE | ID: mdl-38619944

ABSTRACT

In the field of digital humanities, color research aims to discover explanations for painting history and color usage habits. However, researchers analyzing color relationships is challenging and time-consuming, as it requires color extraction and a detailed review of many painting images for reference and comparison of color relationships. In our work, we propose ColorNetVis, an interactive color network analysis tool that enables researchers to explore color relationships through color networks. The core of ColorNetVis is a bipartite network model that establishes a bipartite relationship between colors and Chinese painting within a scope based on color difference measurement. It constructs a one-mode color network through projection algorithms and similarity calculation methods to discover the relationship between colors. We propose a coordinated set of views to demonstrate the combination of determined color networks with painting types and real-world attributes. We use color space view, color attribute distribution view, and single color query components to assist researchers in conducting detailed color analysis and validation. Through case studies, researcher reviews, and user studies, we demonstrate that ColorNetVis can effectively help researchers discover knowledge of color relationships and potential color research directions.

11.
Int J Biol Macromol ; 268(Pt 1): 131741, 2024 May.
Article in English | MEDLINE | ID: mdl-38649083

ABSTRACT

Glycogen, a complex branched glucose polymer, is responsible for sugar storage in blood glucose homeostasis. It comprises small ß particles bound together into composite α particles. In diabetic livers, α particles are fragile, breaking apart into smaller particles in dimethyl sulfoxide, DMSO; they are however stable in glycogen from healthy animals. We postulate that the bond between ß particles in α particles involves hydrogen bonding. Liver-glycogen fragility in normal and db/db mice (an animal model for diabetes) is compared using various hydrogen-bond breakers (DMSO, guanidine and urea) at different temperatures. The results showed different degrees of α-particle disruption. Disrupted glycogen showed changes in the mid-infra-red spectrum that are related to hydrogen bonds. While glycogen α-particles are only fragile under harsh, non-physiological conditions, these results nevertheless imply that the bonding between ß particles in α particles is different in diabetic livers compared to healthy, and is probably associated with hydrogen bonding.


Subject(s)
Hydrogen Bonding , Animals , Mice , Dimethyl Sulfoxide/chemistry , Liver Glycogen/metabolism , Urea/chemistry , Guanidine/chemistry , Guanidine/pharmacology , Liver/metabolism , Male
12.
Int Urol Nephrol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564075

ABSTRACT

PURPOSE: To evaluate the differences in clinicopathological features and outcomes of IgA nephropathy (IgAN) patients with and without nephrotic syndrome. METHODS: In this retrospective cohort study, IgAN patients from January 2006 to December 2011 in the First Affiliated Hospital of Sun Yat-sen University were enrolled and followed up to Dec 31, 2013. Logistic and Cox regression were conducted to evaluate the associated factors of nephrotic syndrome (NS) and its relation with outcomes of creatinine doubling and progression to end-stage kidney disease (ESKD). RESULTS: A total of 1413 patients with IgAN were enrolled in this study, 57 (4.0%) of whom exhibited NS. Meanwhile, 13 (22.8%) of NS IgAN patients had minimal change disease (MCD). Logistic regression showed that more presence of hypertension, less glomerular sclerosis, less tubular atrophy/interstitial fibrosis, and lower density of IgA deposition in mesangial region were significantly associated with NS IgAN that were independent of age and gender. In addition, a total of 921 patients (890 with non-NS IgAN and 31 with NS IgAN) were followed up to Dec 31, 2013. After adjusting for age, sex, baseline estimated glomerular rate, hypertension and hemoglobin, no significant difference was observed in outcomes of serum creatinine doubling and ESKD between patients with or without NS IgAN. CONCLUSIONS: Prevalence of NS IgAN patients was 4.0%, and 22.8% of them had MCD. Patients with NS IgAN had more severe clinical but less severe pathological features. However, outcomes of serum creatinine doubling and ESKD were not significantly different between patients with or without NS IgAN.

13.
Cell Death Discov ; 10(1): 138, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485945

ABSTRACT

Triple-negative breast cancer (TNBC) is a pathological subtype of breast cancer (BC) with high malignancy, strong invasiveness and poor prognosis. Long non-coding RNA (LncRNA) plays an important role during tumorigenesis. We identified that Linc00707 was upregulated in TNBC tissues by TCGA database and RT-qPCR assay, compared with normal breast tissues and other subtypes of BC. Linc00707 promoted TNBC cells proliferation, migration and invasion. Furthermore, we found that knockdown of Linc00707 influenced autophagy via PI3K/AKT/mTOR signaling pathway in TNBC cells. Linc00707 affected the progress of TNBC cells through affecting autophagy. Further mechanistic experiments confirmed that Linc00707 could competitively bind with miR-423-5p to up-regulate MARCH2 expression, ultimately promoting TNBC progression and autophagy through PI3K/AKT/mTOR pathway. In conclusion, we demonstrate that Linc00707 is a key molecule in tumor progression and may be an effective target for patients with TNBC.

14.
Angew Chem Int Ed Engl ; 63(20): e202403017, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38429994

ABSTRACT

Crafting single-atom catalysts (SACs) that possess "just right" modulated electronic and geometric structures, granting accessible active sites for direct room-temperature benzene oxidation is a coveted objective. However, achieving this goal remains a formidable challenge. Here, we introduce an innovative in situ phosphorus-immitting strategy using a new phosphorus source (phosphorus nitride, P3N5) to construct the phosphorus-rich copper (Cu) SACs, designated as Cu/NPC. These catalysts feature locally protruding metal sites on a nitrogen (N)-phosphorus (P)-carbon (C) support (NPC). Rigorous analyses, including X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS), validate the coordinated bonding of nitrogen and phosphorus with atomically dispersed Cu sites on NPC. Crucially, systematic first-principles calculations, coupled with the climbing image nudged-elastic-band (CI-NEB) method, provide a comprehensive understanding of the structure-property-activity relationship of the distorted Cu-N2P2 centers in Cu/NPC for selective oxidation of benzene to phenol production. Interestingly, Cu/NPC has shown more energetically favorable C-H bond activation compared to the benchmark Cu/NC SACs in the direct oxidation of benzene, resulting in outstanding benzene conversion (50.3 %) and phenol selectivity (99.3 %) at room temperature. Furthermore, Cu/NPC achieves a remarkable turnover frequency of 263 h-1 and mass-specific activity of 35.2 mmol g-1 h-1, surpassing the state-of-the-art benzene-to-phenol conversion catalysts to date.

15.
J Environ Manage ; 356: 120574, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520862

ABSTRACT

The resource quantity and elemental stoichiometry play pivotal roles in shaping belowground biodiversity. However, a significant knowledge gap remains regarding the influence of different plant communities established through monoculture plantations on soil fungi and bacteria's taxonomic and functional dynamics. This study aimed to elucidate the mechanisms underlying the regulation and adaptation of microbial communities at the taxonomic and functional levels in response to communities formed over 34 years through monoculture plantations of coniferous species (Japanese larch, Armand pine, and Chinese pine), deciduous forest species (Katsura), and natural shrubland species (Asian hazel and Liaotung oak) in the temperate climate. The taxonomic and functional classifications of fungi and bacteria were examined for the mineral topsoil (0-10 cm) using MiSeq-sequencing and annotation tools of microorganisms (FAPROTAX and Funguild). Soil bacterial (6.52 ± 0.15) and fungal (4.46 ± 0.12) OTUs' diversity and richness (5.83*103±100 and 1.12*103±46.4, respectively) were higher in the Katsura plantation compared to Armand pine and Chinese pine. This difference was attributed to low soil DOC/OP (24) and DON/OP (11) ratios in the Katsura, indicating that phosphorus availability increased microbial community diversity. The Chinese pine plantation exhibited low functional diversity (3.34 ± 0.04) and richness (45.2 ± 0.41) in bacterial and fungal communities (diversity 3.16 ± 0.15 and richness 56.8 ± 3.13), which could be attributed to the high C/N ratio (25) of litter. These findings suggested that ecological stoichiometry, such as of enzyme, litter C/N, soil DOC/DOP, and DON/DOP ratios, was a sign of the decoupling of soil microorganisms at the genetic and functional levels to land restoration by plantations. It was found that the stoichiometric ratios of plant biomass served as indicators of microbial functions, whereas the stoichiometric ratios of available nutrients in soil regulated microbial genetic diversity. Therefore, nutrient stoichiometry could serve as a strong predictor of microbial diversity and composition during forest restoration.


Subject(s)
Pinus , Soil Microbiology , Forests , Biodiversity , Soil , Bacteria/genetics , Nutrients
16.
Micromachines (Basel) ; 15(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38542598

ABSTRACT

This paper presents a MEMS electrochemical angular accelerometer with a silicon-based four-electrode structure, which was made of thousands of interconnected microchannels for electrolyte flow, anodes uniformly coated on structure surfaces and cathodes located on the sidewalls of flow holes. From the perspective of device fabrication, in this study, the previously reported multi-piece assembly was simplified into single-piece integrative manufacturing, effectively addressing the problems of complex assembly and manual alignment. From the perspective of the sensitive structure, in this study, the silicon-based four-electrode structure featuring with complete insulation layers between anodes and cathodes can enable fast electrochemical reactions with improved sensitivities. Numerical simulations were conducted to optimize the geometrical parameters of the silicon-based four-electrode structure, where increases in fluid resistance and cathode area were found to expand working bandwidths and improve device sensitivity, respectively. Then, the silicon-based four-electrode structure was fabricated by conventional MEMS processes, mainly composed of wafer-level bonding and wafer-level etching. As to device characterization, the MEMS electrochemical angular accelerometer with the silicon-based four-electrode structure exhibited a maximum sensitivity of 1458 V/(rad/s2) at 0.01 Hz and a minimum noise level of -164 dB at 1 Hz. Compared with previously reported electrochemical angular accelerometers, the angular accelerometer developed in this study offered higher sensitivities and lower noise levels, indicating strong potential for applications in the field of rotational seismology.

17.
Bioeng Transl Med ; 9(2): e10630, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435816

ABSTRACT

Hypertrophic scar formation is influenced by the intricate interplay between fibroblasts and endothelial cells. In this study, we investigated this relationship using in vitro and in vivo models. Clinical observations revealed distinct morphological changes and increased vascularity at pathological scar sites. Further analysis using OCTA, immunohistochemistry, and immunofluorescence confirmed the involvement of angiogenesis in scar formation. Our indirect co-culture systems demonstrated that endothelial cells enhance the proliferation and migration of fibroblasts through the secretion of cytokines including VEGF, PDGF, bFGF, and TGF-ß. Additionally, a suspended co-culture multicellular spheroid model revealed molecular-level changes associated with extracellular matrix remodeling, cellular behaviors, inflammatory response, and pro-angiogenic activity. Furthermore, KEGG pathway analysis identified the involvement of TGF-ß, IL-17, Wnt, Notch, PI3K-Akt, and MAPK pathways in regulating fibroblasts activity. These findings underscore the critical role of fibroblasts-endothelial cells crosstalk in scar formation and provide potential targets for therapeutic intervention. Understanding the molecular mechanisms underlying this interplay holds promise for the development of innovative approaches to treat tissue injuries and diseases.

18.
Math Biosci Eng ; 21(2): 1872-1883, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38454665

ABSTRACT

Based on the indicator function integral, this paper identifies the displacement of oil storage tank and calibrates the tank capacity table model. The displacement parameters of a cylinder oil tank with spherical caps at both ends are deduced by establishing an appropriate rectangular coordinate system while cross-section analysis, coordinate transformation, and the functional relationship between oil reserves and oil level height are used as well. Furthermore, the displacement parameters are determined by the least square method and alternating contraction search method to verify the data, which improves the accuracy of the calculation. This research simplifies the integral operation and can be extended to other types of liquid containers of arbitrary shape as a generally applicable method, which shows significant application value for further research on the integral method of indicator function.

19.
Gene ; 910: 148317, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38423141

ABSTRACT

Transient Receptor Potential (TRP) channels, essential for sensing environmental stimuli, are widely distributed. Among them, thermosensory TRP channels play a crucial role in temperature sensing and regulation. Sebastes schlegelii, a significant aquatic economic species, exhibits sensitivity to temperature across multiple aspects. In this study, we identified 18 SsTRP proteins using whole-genome scanning. Motif analysis revealed motif 2 in all TRP proteins, with conserved motifs in subfamilies. TRP-related domains, anchored repeats, and ion-transmembrane domains were found. Chromosome analysis showed 18 TRP genes on 11 chromosomes and a scaffold. Phylogenetics classified SsTRPs into four subfamilies: TRPM, TRPA, TRPV, and TRPC. In diverse organisms, four monophyletic subfamilies were identified. Additionally, we identified key TRP genes with significantly upregulated transcription levels under short-term (30 min) and long-term (3 days) exposure at 24 °C (optimal elevated temperature) and 27 °C (critical high temperature). We propose that genes upregulated at 30 min may be involved in the primary response process of temperature sensing, while genes upregulated at 3 days may participate in the secondary response process of temperature perception. This study lays the foundation for understanding the regulatory mechanisms of TRPs responses to environmental stimuli in S. schlegelii and other fishes.


Subject(s)
Perciformes , Transient Receptor Potential Channels , Animals , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Temperature , Protein Domains , Perciformes/genetics , Perciformes/metabolism
20.
Small ; : e2310163, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389176

ABSTRACT

The oxygen reduction reaction (ORR) catalyzed by transition-metal single-atom catalysts (SACs) is promising for practical applications in energy-conversion devices, but great challenges still remain due to the sluggish kinetics of O═O cleavage. Herein, a kind of high-density iron network-like sites catalysts are constructed with optimized intermetallic distances on an amino-functionalized carbon matrix (Fe-HDNSs). Quasi-in situ soft X-ray absorption spectroscopy and in situ synchrotron infrared characterizations demonstrate that the optimized intermetallic distances in Fe-HDNSs can in situ activate the molecular oxygen by fast electron compensation through the hybridized Fe 3d-O 2p, which efficiently facilitates the cleavage of the O═O bond to *O species and highly suppresses the side reactions for an accelerated kinetics of the 4e- ORR. As a result, the well-designed Fe-HDNSs catalysts exhibit superior performances with a half-wave potential of 0.89 V versus reversible hydrogen electrode (RHE) and a kinetic current density of 72 mA cm-2 @0.80 V versus RHE, exceeding most of the noble-metal-free ORR catalysts. This work offers some new insights into the understanding of 4e- ORR kinetics and reaction pathways to boost electrochemical performances of SACs.

SELECTION OF CITATIONS
SEARCH DETAIL
...