Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(21): 5660-5665, 2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37707182

ABSTRACT

Radiative cooling, which needs no external energy to lower the temperature, has drawn great interest in recent years. As a potential candidate, the design of a metamaterial cooler remains a big challenge due to the complexity of the nanostructure and the low average absorptivity. In this work, a capped metal-insulator-metal metamaterial is proposed to achieve ultra-broadband perfect absorbing. The numerical results show that its average absorptivity is 94% in the 8-13 µm wavelength band under normal incidence, bringing about the excellent selective thermal emissivity in the IR atmospheric transparent window. Together with polarization insensitivity and wide angle independency, the proposed metamaterial can realize a net cooling power as high as 120.7W/m 2 under the circumstance without sunshine. As a proof of concept, it is applied to coat the heat sink of a 3D integrated circuit chip. The result shows that the temperature of the observation point lowers 18.3 K after coating. This work offers the promising application of passive radiative cooling in thermal management for personnel, electronic devices, and many others.

2.
RSC Adv ; 13(24): 16311-16320, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37266509

ABSTRACT

Musk xylene (MX), a kind of personal care product, has become a new type of environmental contaminant in recent years. Long-term exposure to MX is associated with a variety of cancers, but the mechanism is still unclear. Meanwhile, our previous research showed that MX exposure could lead to malignant transformation of human liver cells L02 and up-regulation of multi genes which are involved in the MAPK signaling pathway, such as the epidermal growth factor receptor (EGFR). These findings indicated that the MAPK signaling pathway might be involved in the malignant transformation caused by MX, but the mechanism is also unclear. In this study, the underlying interaction mechanisms between EGFR and MX were investigated using molecular dynamics (MD) simulation. Results revealed that MX bound to the ECD of EGFR in four binding sites, which was mainly driven by van der Waals and nonpolar interactions, and the affinity of MX toward ECD was sIII > sI > sII > sIV. Further analysis through MD simulation found that s III, the site with the strongest binding, was coincidentally located at the binding area of EGF, which is the natural ligand of EGFR. Therefore, we speculated that MX may activate the MAPK signaling pathway by binding to EGFR in a similar way to EGF, and finally lead to tumorigenesis. In addition, the MM/PBSA method could also be utilized to calculate the hot residues in each binding site. The prediction of hot residues would provide some theoretical guidance for further study of the carcinogenesis mechanisms of MX both in MD simulation and experimental research.

3.
IEEE Trans Biomed Eng ; 67(8): 2206-2214, 2020 08.
Article in English | MEDLINE | ID: mdl-31804925

ABSTRACT

Microwave induced thermoacoustic tomography is a newly developing non-invasive and non-ionizing modality. In practical applications, such as breast tumor detection and brain imaging, the acoustic properties in the tissue to be detected are usually unknown and spatially non-uniform, which results in distortion and blurring of the buried targets. In this paper, a reconstruction method based on speed of sound (SoS) autofocus is proposed to reduce the effect of acoustic inhomogeneity in different soft tissues. According to this method, the number of tissue types, which are referred to as clusters in this work, can be automatically determined by a decision graph. To distinguish the boundaries of different tissues, a Gaussian Mixture Model (GMM) is fitted to the obtained image data for soft clustering instead of traditional hard clustering. Through fixing the tissue centers which are characterized by corresponding data density peaks as the means of Gaussian parameters rather than choosing them randomly, adaptive and robust reconstruction performance can be guaranteed. After performing an iterative GMM optimization, the SoS autofocus is achieved. Image reconstructed by using the updated SoS distribution is with higher accuracy than that with homogeneous assumption. Compared with the existing similar methods, the proposed method strategy obviates the need of extra experiment costs, and possesses good robustness with respect to hard assignment model errors when the medium is relatively complex. Realistic breast model and brain model simulations combined with experiments of agar phantom and pig's brain are provided to demonstrate the effectiveness of the proposed method.


Subject(s)
Algorithms , Microwaves , Acoustics , Animals , Female , Humans , Image Processing, Computer-Assisted , Phantoms, Imaging , Tomography , Tomography, X-Ray Computed
4.
Bioresour Technol ; 268: 531-538, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30121026

ABSTRACT

In this research, we compared the discharge characteristics and catalytic efficiency of sulfuric acid, p-toluenesulfonic acid, and their respective sodium salts (sodium sulfate and sodium p-toluenesulfonate) in sawdust liquefaction and found that sulfuric acid was the optimal catalyst when glycerol was used as solvent during the plasma electrolytic liquefaction (PEL) process. When sodium p-toluenesulfonate was used as the only catalyst, the liquefaction yield reached 83.51% after 25 min. This yield was higher than that obtained using sodium sulfate as the catalyst (60.63%) because different concentrations of H ions were produced in PEL. Cellulose, lignin, and holocellulose were extracted from sawdust and successfully liquefied in PEL, illustrating the universality of PEL. The optical emission spectra of the different biomass during the PEL process were similar, indicating that the kinds of free radicals produced were similar, which can accelerate the liquefaction of sawdust.


Subject(s)
Glycerol , Lignin , Acids , Biomass , Electrolysis
5.
Bioresour Technol ; 241: 545-551, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28601772

ABSTRACT

In this work, plasma electrolytic technology was successfully employed to achieve fast liquefaction of sawdust when polyethylene glycol 200 (PEG 200) and glycerol were used as liquefacient in the presence of the catalyst sulfuric acid. Results showed that H ions could heat the solution effectively during the plasma electrolytic liquefaction (PEL) process. The influence of some key parameters including liquefaction time, catalyst percentage, liquefacient/sawdust mass ratio, and PEG 200/glycerol molar ratio on the liquefaction yield were investigated. Based on the results of single factor experiments, response surface methodology (RSM) was applied to optimize the liquefaction process. Under the optimal conditions that is liquefaction time of 5.10min, catalyst percentage of 1.05%, liquefacient/sawdust mass ratio of 7.12/1 and PEG 200/glycerol molar ratio of 1.40/1, the liquefaction yield reached 99.48%. Hence, it could be concluded that PEL has good application potential for biomass fast liquefaction.


Subject(s)
Polyethylene Glycols , Wood , Biomass , Catalysis , Glycerol
6.
IEEE Trans Biomed Eng ; 64(4): 816-825, 2017 04.
Article in English | MEDLINE | ID: mdl-27305666

ABSTRACT

The use of radial k-space trajectories has drawn strong interest from researchers for their potential in developing fast imaging methods in magnetic resonance imaging (MRI). Compared with conventional Cartesian trajectories, radial sampling collects more data from the central k-space region and the radially sampled data are more incoherent. These properties are very suitable for compressed sensing (CS)-based fast imaging. When reconstructing under-sampled radial data with CS, regridding and inverse-regridding are needed to transfer data between the image and frequency domains. In each CS iteration, two-dimensional interpolations are implemented twice in the regridding and inverse-regridding, introducing errors and undermining reconstruction quality. To overcome these problems, a radial-like pseudo-polar (PP) trajectory is proposed for the CS MRI applications. The PP trajectory preserves all the essential features of radial trajectory and allows an image reconstruction with PP fast Fourier transform (PPFFT) instead of interpolations. This paper attempts to investigate the performance of PP trajectory-based CS-MRI. In CS-based image reconstruction, the transformation of PP-sampled k-space data into the image domain is realized through PPFFT, which is based on the standard one-dimensional FFT and the fractional Fourier transform. To evaluate the effectiveness of the proposed methods, both numerical and experimental data are used to compare the new methods with conventional approaches. The proposed method provided high-quality reconstruction of the MR images with over 2-dB gain in peak signal-to-noise ratio while keeping structural similarity over 0.88 in different situations. Compared with the conventional radial sampling-based CS MRI methods, the proposed method achieves a more accurate reconstruction with respect to image detail/edge preservation and artifact suppression. The successful implementation of the PP subsampling-based CS scheme provides a practical and accurate CS-based rapid imaging method for clinical applications.


Subject(s)
Algorithms , Brain/diagnostic imaging , Data Compression/methods , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Signal Processing, Computer-Assisted , Brain/anatomy & histology , Fourier Analysis , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sample Size , Sensitivity and Specificity , Signal-To-Noise Ratio
7.
Med Phys ; 42(5): 2103-12, 2015 May.
Article in English | MEDLINE | ID: mdl-25979005

ABSTRACT

PURPOSE: An iterative reconstruction method has been previously reported by the authors of this paper. However, the iterative reconstruction method was demonstrated by solely using the numerical simulations. It is essential to apply the iterative reconstruction method to practice conditions. The objective of this work is to validate the capability of the iterative reconstruction method for reducing the effects of acoustic heterogeneity with the experimental data in microwave induced thermoacoustic tomography. METHODS: Most existing reconstruction methods need to combine the ultrasonic measurement technology to quantitatively measure the velocity distribution of heterogeneity, which increases the system complexity. Different to existing reconstruction methods, the iterative reconstruction method combines time reversal mirror technique, fast marching method, and simultaneous algebraic reconstruction technique to iteratively estimate the velocity distribution of heterogeneous tissue by solely using the measured data. Then, the estimated velocity distribution is used subsequently to reconstruct the highly accurate image of microwave absorption distribution. Experiments that a target placed in an acoustic heterogeneous environment are performed to validate the iterative reconstruction method. RESULTS: By using the estimated velocity distribution, the target in an acoustic heterogeneous environment can be reconstructed with better shape and higher image contrast than targets that are reconstructed with a homogeneous velocity distribution. CONCLUSIONS: The distortions caused by the acoustic heterogeneity can be efficiently corrected by utilizing the velocity distribution estimated by the iterative reconstruction method. The advantage of the iterative reconstruction method over the existing correction methods is that it is successful in improving the quality of the image of microwave absorption distribution without increasing the system complexity.


Subject(s)
Acoustics , Microwaves , Tomography/methods , Acoustics/instrumentation , Adipose Tissue/anatomy & histology , Adipose Tissue/physiology , Animals , Artifacts , Breast/anatomy & histology , Breast/physiology , Breast Neoplasms/pathology , Breast Neoplasms/physiopathology , Equipment Design , Humans , Muscles/anatomy & histology , Muscles/physiology , Phantoms, Imaging , Pressure , Swine , Tomography/instrumentation
8.
IEEE Trans Biomed Eng ; 62(3): 930-8, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25438298

ABSTRACT

Microwave-induced thermoacoustic tomography (MITAT) is a hybrid method which constructs images with ultrasound spatial resolution while exploiting dielectric contrast at microwave frequency. It has great potential in biomedical imaging especially in early breast cancer detection. The detection of early stage breast tumor in MITAT is challenged by the moderate endogenous dielectric contrast between malignant and healthy glandular tissues. In order to overcome this limitation, the performance of using carbon nanotubes (CNTs) as an imaging contrast enhancement agent is evaluated. First, the influences in dielectric and acoustic properties caused by CNTs are measured. Second, based on the measurements and the published data, numerical breast phantom is created and then used to explore the contrast enhancing effect of CNTs for MITAT, by an integrated simulation approach in both electromagnetic and acoustic field. With an experimental MITAT system, the thermoacoustic responses of tissue mimicking materials with different CNTs concentrations are also quantitatively investigated. Finally, the effectiveness of the contrast agent is also validated experimentally by using a MITAT system. The results show that the using of the dielectric contrast agent can effectively enhance the contrast of the MITAT image.


Subject(s)
Contrast Media/chemistry , Image Processing, Computer-Assisted/methods , Nanotubes, Carbon/chemistry , Tomography/methods , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Microwaves , Phantoms, Imaging
9.
Article in English | MEDLINE | ID: mdl-23365929

ABSTRACT

Microwave-induced thermo-acoustic tomography (MITAT) is an innovative technique for tumor's detection. Due to there has high contrast in terms with permittivity and electrical conductivity of tumor versus normal tissue, even if the tumor still in the early phase it can be imaged clearly. For the proposed MITAT system, low energy microwave pulses are used as the irradiating signals, while the received signals are ultrasound, high contrast and high resolution images can be obtained. After some theoretical research and basic fundamental experiments, the first prototype of experimental system is designed and built. It includes the microwave radiator, the arrayed sensor bowl, the circular scanning platform, the system controller and the signal processor. Based on the experimental results using this integral MITAT clinic system, the images contrast can be reached higher than 383:1; while the sub-millimeter special resolution is obtained for a 1cm(3) scale tumor mimic.


Subject(s)
Breast Neoplasms/diagnosis , Microwaves , Tomography/instrumentation , Acoustics/instrumentation , Breast Neoplasms/diagnostic imaging , Equipment Design , Female , Humans , Image Interpretation, Computer-Assisted , Phantoms, Imaging , Signal Processing, Computer-Assisted , Tomography/methods , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...