Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Signal Transduct Target Ther ; 9(1): 158, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38862461

ABSTRACT

Cell membrane-camouflaged nanoparticles possess inherent advantages derived from their membrane structure and surface antigens, including prolonged circulation in the bloodstream, specific cell recognition and targeting capabilities, and potential for immunotherapy. Herein, we introduce a cell membrane biomimetic nanodrug platform termed MPB-3BP@CM NPs. Comprising microporous Prussian blue nanoparticles (MPB NPs) serving as both a photothermal sensitizer and carrier for 3-bromopyruvate (3BP), these nanoparticles are cloaked in a genetically programmable cell membrane displaying variants of signal regulatory protein α (SIRPα) with enhanced affinity to CD47. As a result, MPB-3BP@CM NPs inherit the characteristics of the original cell membrane, exhibiting an extended circulation time in the bloodstream and effectively targeting CD47 on the cytomembrane of colorectal cancer (CRC) cells. Notably, blocking CD47 with MPB-3BP@CM NPs enhances the phagocytosis of CRC cells by macrophages. Additionally, 3BP, an inhibitor of hexokinase II (HK2), suppresses glycolysis, leading to a reduction in adenosine triphosphate (ATP) levels and lactate production. Besides, it promotes the polarization of tumor-associated macrophages (TAMs) towards an anti-tumor M1 phenotype. Furthermore, integration with MPB NPs-mediated photothermal therapy (PTT) enhances the therapeutic efficacy against tumors. These advantages make MPB-3BP@CM NPs an attractive platform for the future development of innovative therapeutic approaches for CRC. Concurrently, it introduces a universal approach for engineering disease-tailored cell membranes for tumor therapy.


Subject(s)
CD47 Antigen , Cell Membrane , Colorectal Neoplasms , Nanoparticles , Colorectal Neoplasms/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/therapy , Nanoparticles/chemistry , Humans , CD47 Antigen/genetics , Mice , Cell Membrane/metabolism , Cell Membrane/genetics , Animals , Pyruvates/chemistry , Pyruvates/pharmacology , Hexokinase/genetics , Cell Line, Tumor , Macrophages/metabolism , Macrophages/drug effects , Ferrocyanides
2.
Theranostics ; 14(6): 2304-2328, 2024.
Article in English | MEDLINE | ID: mdl-38646653

ABSTRACT

The gut microbiota is a crucial component of the intricate microecosystem within the human body that engages in interactions with the host and influences various physiological processes and pathological conditions. In recent years, the association between dysbiosis of the gut microbiota and tumorigenesis has garnered increasing attention, as it is recognized as a hallmark of cancer within the scientific community. However, only a few microorganisms have been identified as potential drivers of tumorigenesis, and enhancing the molecular understanding of this process has substantial scientific importance and clinical relevance for cancer treatment. In this review, we delineate the impact of the gut microbiota on tumorigenesis and treatment in multiple types of cancer while also analyzing the associated molecular mechanisms. Moreover, we discuss the utility of gut microbiota data in cancer diagnosis and patient stratification. We further outline current research on harnessing microorganisms for cancer treatment while also analyzing the prospects and challenges associated with this approach.


Subject(s)
Carcinogenesis , Dysbiosis , Gastrointestinal Microbiome , Neoplasms , Humans , Neoplasms/microbiology , Neoplasms/therapy , Dysbiosis/microbiology , Animals
3.
Biomaterials ; 305: 122435, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38150771

ABSTRACT

Hepatocellular carcinoma (HCC) has an insidious onset and high malignancy. Most patients have progressed to intermediate and advanced stages by the time of diagnosis, and the long-term efficacy of traditional treatments is not satisfactory. Immunotherapy has shown great promise in the treatment of HCC in recent years; however, the low immunogenicity and severe immunosuppressive tumor microenvironment result in a low response rate to immunotherapy in HCC patients. Therefore, it is of great significance to improve the immunogenicity of HCC and thus enhance its sensitivity to immunotherapy. Here, we prepared the boronophenylalanine-modified dual drug-loaded polydopamine nanoparticles by a facile method. This system used boronophenylalanine-modified polydopamine nanoparticles as a delivery vehicle and photothermal material for the chemotherapeutic drug doxorubicin and the immune agonist CpG oligodeoxynucleotides (CpG-ODN), with both active targeting and lysosomal escape functions. The cancer cells are rapidly killed by photothermal treatment, and then chemotherapy is used to further kill cancer cells that are inadequately treated by photothermal treatment. The combination of photothermal-chemotherapy synergistically induces the release of relevant antigens from tumor cells, thus initiating anti-tumor immunity; and then cooperates with CpG-ODN to trigger a powerful anti-tumor immune memory effect, potently and durably inhibiting HCC recurrence.


Subject(s)
Carcinoma, Hepatocellular , Indoles , Liver Neoplasms , Nanoparticles , Polymers , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Doxorubicin/therapeutic use , Drug Carriers/therapeutic use , Phototherapy , Immunity , Tumor Microenvironment , Cell Line, Tumor
4.
Adv Sci (Weinh) ; 10(35): e2303819, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37875399

ABSTRACT

Patients with colorectal cancer (CRC) and diffuse peritoneal metastasis (PM) are not eligible for surgical intervention. Thus, palliative treatment remains the standard of care in clinical practice. Systemic chemotherapy fails to cause drug accumulation at the lesion sites, while intraperitoneal chemotherapy (IPC) is limited by high clearance rates and associated complications. Given the poor prognosis, a customized OxP/R848@PLEL hydrogel delivery system has been devised to improve the clinical benefit of advanced CRC with diffuse PM. This system is distinguished by its simplicity, security, and efficiency. Specifically, the PLEL hydrogel exhibits excellent injectability and thermosensitivity, enabling the formation of drug depots within the abdominal cavity, rendering it an optimal carrier for IPC. Oxaliplatin (OxP), a first-line drug for advanced CRC, is cytotoxic and enhances the immunogenicity of tumors by inducing immunogenic cell death. Furthermore, OxP and resiquimod (R848) synergistically enhance the maturation of dendritic cells, promote the expansion of cytotoxic T lymphocytes, and induce the formation of central memory T cells. Moreover, R848 domesticates macrophages to an anti-tumor phenotype. OxP/R848@PLEL effectively eradicates peritoneal metastases, completely inhibits ascites production, and significantly prolongs mice lifespan. As such, it provides a promising approach to managing diffuse PM in patients with CRC without surgical indications.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Peritoneal Neoplasms , Humans , Animals , Mice , Hydrogels/therapeutic use , Peritoneal Neoplasms/drug therapy , Peritoneal Neoplasms/pathology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Antineoplastic Agents/pharmacology , Oxaliplatin/therapeutic use , Immunotherapy
5.
Biomaterials ; 293: 121975, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36580720

ABSTRACT

Bladder cancer is one of the most common malignant tumors in the urinary system worldwide. The poor permeability and uncontrollable release of drug and hypoxia of tumor tissues were the main reasons leading to poor therapeutic effect of chemo-photodynamic therapy for bladder cancer. To solve the above problems, a tumor-targeting peptide Arg-Gly-Asp (RGD) modified platinum nanozyme (PtNP) co-loaded glutathione (GSH)-responsive prodrug nanoparticles (PTX-SS-HPPH/Pt@RGD-NP) was constructed. Firstly, a GSH-responsive prodrug (PTX-SS-HPPH) was prepared by introducing a disulfide bond between paclitaxel (PTX) and photosensitizer 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH), which could realize the GSH-responsive release of the drug at the tumor sites. Also, the distearoylphosphoethanolamine-poly (ethylene glycol)-RGD peptide (DSPE-PEG-RGD) modified the prodrug to enhance the targeting and permeability ability to bladder cancer cells. Besides, to alleviate the hypoxia of tumor tissues, PtNP was introduced to produce oxygen (O2) and improve photodynamic therapy efficiency. The results showed that the PTX-SS-HPPH/Pt@RGD-NP could achieve GSH-responsive drug release in tumor microenvironment, enhance the drug accumulation time and permeability at tumor sites in T24 subcutaneous tumor model and T24 orthotopic bladder tumor model, and alleviate hypoxia in tumor tissues, thus realizing enhanced chemo-photodynamic therapy for bladder cancer, and providing new strategies and methods for clinical treatment of bladder cancer.


Subject(s)
Nanoparticles , Oligopeptides , Photochemotherapy , Photosensitizing Agents , Prodrugs , Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Glutathione , Nanoparticles/chemistry , Oligopeptides/chemistry , Paclitaxel/therapeutic use , Paclitaxel/chemistry , Photosensitizing Agents/therapeutic use , Platinum/therapeutic use , Polyethylene Glycols/chemistry , Prodrugs/therapeutic use , Prodrugs/chemistry , Tumor Microenvironment , Urinary Bladder Neoplasms/drug therapy
6.
J Anal Appl Pyrolysis ; 163: 105481, 2022 May.
Article in English | MEDLINE | ID: mdl-36540305

ABSTRACT

The disposable masks generated in the battle against COVID-19 has attracted wide attention in the world. Pyrolysis can convert the masks into useful chemicals and fuels. In this work, the masks are pyrolyzed at temperatures of 400-580 °C and the volatiles generated are cracked without or with catalysts at 440-580 °C. The catalysts used include metal oxides (Al2O3, kaolin, Fe2O3, CeO2, TiO2) and molecular sieves (HZSM5, HY, ß(25H), ß(60H)). The yields and composition of gas and liquid products are studied in detail where the tetrahydrofuran (THF) soluble compounds are defined as the liquid product and the n-hexane soluble compounds are defined as the oil. The liquid product and the oil were identified by GC-MS and quantified by GC. Results indicate that 440 °C is sufficient for the masks' pyrolysis and the yields of gas, liquid product and oil are 23.4, 74.7 and 42.1 wt%, respectively. About 30% of the liquid product are C6-C35 hydrocarbons while about 70% are C36-C70 hydrocarbons trapped in the GC column (termed as column residue). The gas products are mainly C5, propylene and butene, accounting for 54.8%, 22.8% and 14.5% of the total gas product, respectively. Cracking of volatiles over various catalysts converts the liquid product mainly to propylene, butene and smaller organic gases. TiO2, HY and ß(60H) are good catalysts, especially ß(60H), which increases the yield of gas product to 86.5 wt% with 73.0% being ethylene, propylene and butene at 580 °C.

7.
Biomaterials ; 288: 121700, 2022 09.
Article in English | MEDLINE | ID: mdl-36049897

ABSTRACT

Currently, activatable photodynamic therapy (PDT) that is precisely regulated by endogenous or exogenous stimuli to selectively produce cytotoxic reactive oxygen species at the tumor site is urgently in demand. Herein, we fabricated a dual-activatable PDT nanosystem regulated by the redox tumor microenvironment and near-infrared (NIR) light-induced photothermal therapy (PTT). In this study, photosensitizer chlorin e6 (Ce6) was conjugated to hyaluronic acid (HA) via a diselenide bond to form an amphiphilic polymer (HSeC) for loading PTT agent IR780 to produce HSeC/IR nanoparticles (NPs). The photoactivity of Ce6 for PDT was "double-locked" by the aggregation-caused quenching (ACQ) effect and the fluorescence resonance energy transfer (FRET) from Ce6 to IR780 during blood circulation. After selective accumulation into tumors, HSeC/IR NPs were subsequently dissociated due to the "double-key", which included diselenide bond dissociation under high redox conditions and IR780 degradation upon NIR laser irradiation, resulting in recovering Ce6. In vitro studies indicated that Ce6 photoactivity in HSeC/IR NPs was significantly suppressed when compared with free Ce6 or in HSeC NPs. Moreover, BALB/c mice treated with HSeC/IR NPs displayed distinctly alleviated skin damage during PDT. Synergetic cascaded PTT-PDT with superior tumor suppression was observed in SCC7 tumor-bearing mice. Therefore, the study findings could provide a promising treatment strategy for PTT-facilitated PDT with high antitumor efficacies and reduced skin phototoxicity levels.


Subject(s)
Chlorophyllides , Nanoparticles , Neoplasms , Photochemotherapy , Porphyrins , Animals , Cell Line, Tumor , Chlorophyllides/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Nanoparticles/chemistry , Neoplasms/drug therapy , Oxidation-Reduction , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/therapeutic use , Phototherapy , Porphyrins/chemistry , Tumor Microenvironment
8.
J Hazard Mater ; 424(Pt A): 127297, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34601413

ABSTRACT

Large volumes of waste petroleum coke stockpiled in open yard not only represent a huge loss of valuable material but also pose a significant risk to the environment. This work proposed an innovative strategy for waste petroleum coke valorization by exploring its catalytic performance of biomass gasification tar destruction. Waste petroleum coke was firstly activated by potassium hydroxide (KOH) to obtain high specific surface area as well as low sulfur and ash contents. Petroleum coke derived catalyst showed superior performance than a commercial activated carbon derived catalyst for destruction of naphthalene as the tar model compound. The petroleum coke derived catalyst exhibited 99.1% naphthalene destruction efficiency at 800 °C but deactivated quickly under N2 atmosphere. Under H2 and steam atmospheres, the catalytic activities were 98.6% and 96.5% for 8 h, respectively. To study the correlation between catalytic performance and the structure of carbon catalyst, elemental analysis, scanning electron microscope (SEM) analysis, transmission electron microscope (TEM) analysis, X-ray powder diffraction (XRD) analysis, Brunauer-Emmett-Teller method (BET) analysis, Fourier transform infrared (FTIR) spectroscopy, temperature programmed oxidation (TPO) analysis and Raman spectroscopy were performed on both fresh and spent catalysts. Results demonstrated that the hydrogen-rich groups (small rings and amorphous carbon) and oxygen-containing groups may account for the good resistance to coke deposition under H2 and steam atmospheres.


Subject(s)
Coke , Petroleum , Biomass , Catalysis , Steam
9.
Biomaterials ; 281: 121328, 2022 02.
Article in English | MEDLINE | ID: mdl-34953333

ABSTRACT

Chemotherapy drugs play important roles in clinical treatment, and most first-line regimens of cancer therapy contain chemotherapy drugs. In particular, some chemotherapeutic drugs can also produce ICD effect and enhance the immune response of the body. However, most chemotherapy drugs do not specifically target tumors or the complex tumor microenvironment, which renders their curative effect insufficient. Therefore, we constructed a tumor microenvironment-responsive drug delivery system (Ag2S-PAsp-cRGD) combined with doxorubicin (DOX) for tumor therapy. Firstly, Ag2S nanoparticles (NPs) were modified with polymer aspartic acid (PAsp) to construct the drug-loading platform. Then, an active targeting ligand (cRGD) was coupled through an amide reaction to enhance the functional targeting ability of the drug delivery system. In vivo imaging of the system showed that the nanoparticles accumulated in the tumor site, which facilitated the delivery of the chemotherapy drug DOX to the targeted tumor site. Furthermore, the photothermal effect of Ag2S NPs can effectively killed tumor cells, and also helped the release of DOX from nanoparticles into tumor tissue, thus enhancing the chemotherapeutic effect. Moreover, combined with the ICD effect jointly induced by photothermal therapy (PTT) and DOX, the treatment further activated the host immune response against tumors by enhancing the presentation of antigens and promoting the differentiation of T cells. This strategy of photo-chemo-immunotherapy showed excellent antitumor effect, not only eliminating the primary tumor but also preventing recurrence and inhibiting metastasis.


Subject(s)
Nanoparticles , Photochemotherapy , Aspartic Acid , Cell Line, Tumor , Doxorubicin , Immunity , Polymers/pharmacology , Tumor Microenvironment
10.
Small Methods ; 5(5): e2001212, 2021 05.
Article in English | MEDLINE | ID: mdl-34928089

ABSTRACT

The diagnosis of malignant tumors is essential for informing clinical decisions regarding therapeutic options. Current imaging and pathological diagnostic methods do not provide quantitative molecular information that is important in tumor identification. Moreover, pathological tissue analysis is dependent on unevenly distributed pathological features. The tumor microenvironment has been documented to have hydrogen peroxide (H2 O2 ). This study presents a biologically sensitive and efficient H2 O2 electrochemical sensor based on PtNi nanoparticle-doped N-reduced graphene oxide (PtNi-N-rGO) with a low detection limit (2.8 × 10-9 m), a fast response time (<6 s) and desirable anti-interference characteristics. Herein, H2 O2 is used as molecular biomarker. The sensor successfully captures H2 O2 from cancer cells. In addition, it efficiently detects tumor tissues, adjacent tissues, and normal tissues. This study demonstrates the H2 O2 sensor potential to rapidly detect tumor tissues. This technique provides a complementary method for pathological tumor diagnosis that is independent of the traditional pathology labs.


Subject(s)
Electrochemical Techniques/methods , Hydrogen Peroxide/analysis , Neoplasms/diagnosis , Biomarkers, Tumor/analysis , Graphite/chemistry , Humans , Limit of Detection , Nanocomposites/chemistry , Nickel/chemistry , Nitrogen/chemistry , Platinum/chemistry
11.
Adv Sci (Weinh) ; 8(24): e2102952, 2021 12.
Article in English | MEDLINE | ID: mdl-34713626

ABSTRACT

Increasing evidence has suggested that chemotherapeutics affect the integrity of the intestinal barrier and alter the intestinal microbiota, thus limiting the therapeutic outcomes of cancer chemotherapy. Docetaxel (DTX) is used for breast cancer treatment and has gastrointestinal side effects, but the influence of DTX formulations on the intestinal barrier and intestinal microbiota remains unknown. Therefore, in this work, the influence of DTX injection (free DTX, commercial formulation) and DTX/methoxy poly(ethylene glycol)-block-poly(D,L-lactide) (mPEG-PDLLA) (DTX micelles, nanoformulation) on the integrity of the intestinal barrier and the intestinal microbiota is investigated. It is found that the free DTX causes significantly greater intestinal barrier damage than the DTX micelles. The diversity of the intestinal microbiota, and the relative abundance of Akkermansia muciniphila and Ruminococcus gnavus in the DTX micelle-treated group is significantly higher than that in the free DTX-treated group. Moreover, the tumor growth rate is elevated in antibiotic mixture-pretreated mice, demonstrating that the diversity and composition of the intestinal microbiota may be associated with tumor progression. This work demonstrates that different formulations of chemotherapeutics have different effects on the integrity of the intestinal barrier and the intestinal microbiota.


Subject(s)
Adenocarcinoma/drug therapy , Antineoplastic Agents/pharmacology , Colorectal Neoplasms/drug therapy , Docetaxel/pharmacology , Gastrointestinal Microbiome/drug effects , Intestinal Mucosa/drug effects , Animals , Antineoplastic Agents/administration & dosage , Caco-2 Cells , Disease Models, Animal , Docetaxel/administration & dosage , Female , Humans , Mice , Mice, Inbred BALB C , Micelles
12.
J Phys Chem Lett ; 12(39): 9413-9421, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34553945

ABSTRACT

The in situ formation and removal of coke is a critical problem in heterogeneous catalysis, but its mechanism is not well understood. This work investigates the mechanism of carbon deposition and hydrogenation on an Fe cluster under high-temperature conditions with the density functional tight-binding (DFTB) based nanoreactor molecular dynamics (NMD) method. Our study shows that successive formation of carbon chains, rings, and fused rings occurred during the carbon deposition on Fe clusters. Hydrogenation of activated carbon happens through direct C-H coupling, while the hydrogenation of graphitic carbon involves hydrogenation of the edge carbon, ring-opening reaction, and dealkylation reaction. The main function of the Fe catalyst is to provide the active sites for H2 dissociation and dissociated H spillover, while its activity toward C-C bond breaking is limited. These results highlight the role of the DFTB-NMD method as an effective tool to investigate reaction mechanisms under operating conditions in heterogeneous catalysis.

13.
Acta Pharm Sin B ; 11(4): 1069-1082, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33996418

ABSTRACT

The intracellular retention of nanotherapeutics is essential for their therapeutic activity. The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors. However, strategies for the intracellular immobilization of nanoparticles are limited. Herein, a cisplatin prodrug was synthesized and utilized as a glutathione (GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly. The nanoassembly has been reprogrammed with peptide-containing moieties for tumor-targeting and PD-1/PD-L1 blockade. The aggregation of the nanoassemblies is dependent on GSH concentration. Evaluations in vitro and in vivo revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species (ROS) generation and immunogenic cell death. Moreover, the nanoassemblies reinvigorate the immunocytes, especially the systemic immunocytes, and thereby alleviate pulmonary metastasis, even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics. This strategy provides a promising option for the intracellular immobilization of nanoparticles in vitro and in vivo.

14.
Bioact Mater ; 6(10): 3036-3048, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33778186

ABSTRACT

Although neoantigen-based cancer vaccines show great potential in cancer immunotherapy due to their ability to induce effective and long-lasting anti-tumor immunity, their development is hindered by the limitations of neoantigens identification, low immunogenicity, and weak immune response. Cyclophosphamide (CTX) not only directly kills tumors but also causes immunogenic cell death, providing a promising source of antigens for cancer vaccines. Herein, a combined immunotherapy strategy based on temperature-sensitive PLEL hydrogel is designed. First, CTX-loaded hydrogel is injected intratumorally into CT26 bearing mice to prime anti-tumor immunity, and then 3 days later, PLEL hydrogels loaded with CpG and tumor lysates are subcutaneously injected into both groins to further promote anti-tumor immune responses. The results confirm that this combined strategy reduces the toxicity of CTX, and produces the cytotoxic T lymphocyte response to effectively inhibit tumor growth, prolong survival, and significantly improve the tumor cure rate. Moreover, a long-lasting immune memory response is observed in the mice. About 90% of the cured mice survive for at least 60 days after being re-inoculated with tumors, and the distant tumor growth is also well inhibited. Hence, this PLEL-based combination therapy may provide a promising reference for the clinical promotion of chemotherapy combined with cancer vaccines.

15.
Front Chem ; 8: 598352, 2020.
Article in English | MEDLINE | ID: mdl-33330388

ABSTRACT

Supported single atom or nanocluster catalysts have been widely studied due to their excellent catalytic properties. Many methods to prepare such catalysts start with constructing defects on supports, and the main focus is to improve dispersion and stability of the active sites. This paper for the first time reports a radical-assisted method to prepare single atom or nanocluster Pd on a biochar. The char was prepared by pyrolyzing walnut shell at 600°C under N2, and Pd was loaded on the char by impregnating with palladium acetate in toluene under an oxygen-free atmosphere. It is found that there are three types of radicals in the fresh char (F-Char-600), two of them may adsorb/bond with O2 or Pd2+ resulting in decreases in the char's radical concentration. The Pd on F-Char-600 for 24 h impregnation are single atoms (0.1-0.3 nm, 2%) and nanoclusters (0.3-1.2 nm, 98%), which grow larger (0.3-4 nm, 100%) for 84 h impregnation. The Pd on N2 purged O2-adsorbed-char (N-O-Char-600) is much larger in size. The bond between Pd and char is probably C-Pd in F-Char-600 or C-O-Pd in N-O-Char-600.

16.
Adv Sci (Weinh) ; 7(23): 2001442, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33304746

ABSTRACT

Erlotinib (ERT), oral administration agents, is one of the most pivotal targeted drugs in the treatment of non-small cell lung cancer (NSCLC); however, its poor solubility, low oral bioavailability, and capricious toxicity limit broader clinical applications. In this paper, a novel injectable matrix is prepared based on hollow mesoporous silica nanoparticles (HMSNs) and thermosensitive poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PDLLA-PEG-PDLLA, PLEL) hydrogel to encapsulate and localize the sustained release of ERT for improved efficacy against NSCLC. The test-tube-inversion method shows that this ERT-loaded hydrogel composite (ERT@HMSNs/gel) presents as an injectable flowing solution under room temperature and transfers into a physically crosslinked non-flowing gel structure at physiological temperature.The ERT@HMSNs/gel composite shows a much longer intratumoral and peritumoral drug retention by in vivo imaging study. Notably, this injectable drug delivery system (DDS) provides an impressive balance between antitumor efficacy and systemic safety in a mice xenograft model. The novel ERT loaded HMSNs/gel system may be a promising candidate for the in situ treatment of NSCLC. Moreover, this study provides a prospective platform for the design and fabrication of a nano-scaled delivery system for localized anticancer therapies.

17.
J Biomed Nanotechnol ; 16(5): 721-738, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32919491

ABSTRACT

Oral squamous cell carcinoma (OSCC) is one of the most common cancers in developing countries particularly in those aged over 50. Traditional treatment is with surgery, radiotherapy, chemotherapy, or a combination of these which often results in considerable discomfort to the patient. Here we describe a potential alternative which employs a near-infrared (NIR) responsive dissolvable microneedle system (HMPBs&DOX@HA MNs) made of hyaluronic acid (HA) with hollow mesoporous Prussian blue nanoparticles (HMPBs) loaded with doxorubicin (DOX). HMPBs&DOX@HA MNs can easily penetrate the skin, and shows the ability to heat and maintain the internal temperature of tumor tissue at more than 60 C under the irradiation of an NIR laser. Besides, the DOX release behavior can also be regulated by the NIR laser. HMPBs&DOX@HA MNs reveals not only strong cell inhibition in vitro, but also prominent antitumor efficacy in vivo with all tumor-bearing mice cured in just one treatment and with no recurrence. This innovative transdermal drug delivery system minimizes the side effects while eliminating tumors. It has great potential to be an effective clinical treatment of OSCC.


Subject(s)
Carcinoma, Squamous Cell , Mouth Neoplasms , Animals , Cell Line, Tumor , Doxorubicin , Ferrocyanides , Humans , Hyaluronic Acid , Metal Nanoparticles , Mice , Neoplasm Recurrence, Local
18.
Theranostics ; 10(4): 1500-1513, 2020.
Article in English | MEDLINE | ID: mdl-32042318

ABSTRACT

Mesenchymal stem cell (MSC)-based therapies have been used in skin regeneration due to their ability to differentiate into many cells, promote cytokine secretion and participate in collagen deposition. In this study, we concluded that a CuS@BSA nanoparticles exhibited similar potential in inducing MSCs differentiation to fibroblasts as Cu ions for wound healing. Methods: First, we verified the photothermal efficiency of CuS@BSA in vivo and vitro and had no cytotoxicity for MSCs when the temperature was controlled at 42 °C by adjusting the power of irradiation at 980 nm. And then we detected the expression of vimentin in MSCs, which further directed the MSCs to fibroblasts through Western blotting and Immunofluorescence when treated with CuS@BSA or pre-heat at 42 °C. In addition, we implanted MSCs into the Matrigel or electrospun PLA nanofiber membrane in vitro to evaluating the effect of heating or CuS@BSA on the morphological change of MSCs by SEM. Finally, we evaluated improving skin regeneration by the combination of preheated-MSCs and CuS@BSA nanoparticles that were encapsulated in Matrigel. Results: The CuS@BSA nanoparticles have good photothermal conversion efficiency. Not only CuS nanoparticles itself or after irradiation at 980 nm stimulated the expressioin of vimentin in MSCs. Besides, the CuS@BSA can promote cell proliferation as Cu ion through the expression of ERK. The combination of the CuS@BSA nanoparticles and thermal treatment synergistically improved the closure of an injured wound in an injured wound model. Conclusions: MSCs combined with CuS@BSA are a promising wound dressing for the reconstruction of full-thickness skin injuries.


Subject(s)
Copper/pharmacology , Fibroblasts/drug effects , Mesenchymal Stem Cells/drug effects , Regeneration/drug effects , Wound Healing/drug effects , Animals , Cell Differentiation/drug effects , Copper/administration & dosage , Fibroblasts/metabolism , Male , Mice , Mice, Inbred BALB C , Nanoparticles/administration & dosage , Phototherapy/methods , Rats , Rats, Sprague-Dawley , Regeneration/physiology , Skin/drug effects , Skin/injuries , Vimentin/biosynthesis , Vimentin/drug effects
19.
ACS Appl Bio Mater ; 3(7): 4543-4555, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-35025453

ABSTRACT

The growth and progression of tumor are promoted by multiple cytokines, which are overactivated in the tumor microenvironment. Co-inhibiting the activities of these cytokines is expected to realize the enhanced therapeutic outcome of cancer. However, reasonable combinational strategies are still limited. Herein, a nanoassembly structure that was totally formed by the assembly of small-molecule inhibitors is constructed for the co-inhibition of mTOR and PD-L1. Together with the NIR dye IR783, Rapa and (+)-JQ1 assemble to form a stable nanoassembly structure with controllable particle size. The JQ1/Rapa-IR783 nanoassembly efficiently downregulates the PD-L1 level as well as the level of PKM2. The combination of Rapa and (+)-JQ1 enhances the apoptosis of cancer cells compared with that following treatment with Rapa or (+)-JQ1 alone. In vivo assays conducted to evaluate tumor growth inhibition mediated by the nanoassemblies revealed that the simultaneous delivery of Rapa and (+)-JQ1 not only inhibited the growth of primary tumors but also alleviated pulmonary metastasis by reinvigorating the immune system as the result of the downregulation of both mTOR and PD-L1. It demonstrates that the nanoassembly structure is a promising candidate for the codelivery of immunomodulator for enhanced cancer immunotherapy.

20.
Oncol Lett ; 18(1): 456-464, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31289517

ABSTRACT

Although hepatitis B virus (HBV) infection is responsible for liver cancer, the exact mechanism of its action remains unclear. µ1 adaptin is an intrinsic part of the clathrin adaptor AP-1 complex. In addition to its canonical biological function that involves cargo sorting and vesicular transport, recent studies have demonstrated that µ1 adaptin participates in cell growth and proliferation. The aim of the present study was to investigate the effects of the clathrin adaptor AP-1 complex subunit mu-1 (AP1M1) on liver cancer cell proliferation. The present study reports for the first time that AP1M1 is upregulated in the HBV-transfected HepG2.215 liver cancer cells. Silencing of AP1M1 in HepG2.215 cells suppressed their proliferation, while the overexpression of AP1M1 in HepG2 cells promoted cell proliferation. The data suggested that AP1M1 is one of the crucial factors involved in the progression of liver cancer caused by HBV infection. In addition, it was demonstrated that HBV facilitated AP1M1 expression in a JNK-dependent manner. The increased expression levels of AP1M1 enhanced phosphorylation of protein kinase B and accelerated cell proliferation. Unraveling the effects of AP1M1 on liver cancer cell proliferation and the mechanism of AP1M1 transcriptional regulation may provide new therapeutic targets for HBV-positive liver cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...