Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Chem Commun (Camb) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836308

ABSTRACT

The first chloroaluminoborate, CsAlB3O6Cl, with innovative AlO3Cl tetrahedra and a perfect planar arrangement of [B3O6] groups, was structurally designed and synthesized via chlorination of [AlO4] tetrahedra. Simultaneously, the smooth introduction of the [AlO3Cl] group into borates initiates the development of a chloroaluminoborate and greatly enriches the structural chemistry of aluminoborates.

2.
Phys Chem Chem Phys ; 26(19): 14186-14193, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38713092

ABSTRACT

Cost-effective and readily accessible 3d transition metals (TMs) have been considered as promising candidates for alkane activation while 3d TMs especially the early TMs are usually not very reactive with light alkanes. In this study, the reactivity of Vn+ and VnO+ (n = 1-9) cluster cations towards ethane under thermal collision conditions has been investigated using mass spectrometry and density functional theory calculations. Among Vn+ (n = 1-9) clusters, only V3-5+ can react with C2H6 to generate dehydrogenation products and the reaction rate constants are below 10-13 cm3 molecule-1 s-1. In contrast, the reaction rate constants for all VnO+ (n = 1-9) with C2H6 significantly increase by about 2-4 orders of magnitude. Theoretical analysis evidences that the addition of ligand O affects the charge distribution of the metal centers, resulting in a significant increase in the cluster reactivity. The analysis of frontier orbitals indicates that the agostic interaction determines the size-dependent reactivity of VnO+ cluster cations. This study provides a novel approach for improving the reactivity of early 3d TMs.

3.
JACS Au ; 4(5): 1824-1832, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818048

ABSTRACT

Metal-metal bonds constitute an important type of reactive centers for chemical transformation; however, the availability of active metal-metal bonds being capable of converting methane under mild conditions, the holy grail in catalysis, remains a serious challenge. Herein, benefiting from the systematic investigation of 36 metal clusters of tantalum by using mass spectrometric experiments complemented with quantum chemical calculations, the dehydrogenation of methane at room temperature was successfully achieved by 18 cluster species featuring σ-bonding electrons localized in single naked Ta-Ta centers. In sharp contrast, the other 18 remaining clusters, either without naked Ta-Ta σ-bond or with σ-bonding electrons delocalized over multiple Ta-Ta centers only exhibit molecular CH4-adsorption reactivity or inertness. Mechanistic studies revealed that changing cluster geometric configurations and tuning the number of simple inorganic ligands (e.g., oxygen) could flexibly manipulate the presence or absence of such a reactive Ta-Ta σ-bond. The discovery of Ta-Ta σ-type bond being able to exhibit outstanding activity toward methane conversion not only overturns the traditional recognition that only the metal-metal π- or δ-bonds of early transition metals could participate in bond activation but also opens up a new access to design of promising metal catalysts with dual-atom as reactive sites for chemical transformations.

4.
Heliyon ; 10(9): e30399, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726206

ABSTRACT

As a new type of agricultural waste block substrate utilization, the initial wet base state of the substrate culture block needs to be dried. Therefore, studying the drying mechanism of substrate culture block is critical. In this study, the substrate culture block in a dry state was taken as the research object. Based on physical and chemical properties, the internal section of the substrate culture block was characterized by scanning electron microscopy and the pore condition of the particles was quantified. The results showed that the internal pore structure was uniform and favorable for plant root growth. Based on the pore structure, pore channel modeling was constructed to investigate the distribution of the internal multiphase medium and to distinguish between channels and pore-blind channels. The applicability of the modeling was verified and discussed. By measuring the drying rate of the substrate culture block and classifying its drying stages as fast speed, constant speed, and slow speed, it is clarified that the forms of moisture existence are bound-state water and free-state water, and the moisture migration is prioritized as surface adsorption water, interparticle water, particle attached water, and capillary water. Innovate a method to quantify the change of pore space in the drying process by pore coefficient ratio to evaluate the drying quality. The results show that when the pore coefficient ratio is about 40 %, its moisture content is 20 %∼30 %, and the drying effect is best at this time. The physical drying test further confirmed the correctness of the conclusion of the drying stage division and water loss law. This study can provide a theoretical reference for the modeling study of the pore structure of the block matrix and the exploration of its drying mechanism.

5.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38568633

ABSTRACT

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

6.
J Am Chem Soc ; 146(18): 12485-12495, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651836

ABSTRACT

Understanding the mechanisms of C-H activation of alkanes is a very important research topic. The reactions of metal clusters with alkanes have been extensively studied to reveal the electronic features governing C-H activation, while the experimental cluster reactivity was qualitatively interpreted case by case in the literature. Herein, we prepared and mass-selected over 100 rhodium-based clusters (RhxVyOz- and RhxCoyOz-) to react with light alkanes, enabling the determination of reaction rate constants spanning six orders of magnitude. A satisfactory model being able to quantitatively describe the rate data in terms of multiple cluster electronic features (average electron occupancy of valence s orbitals, the minimum natural charge on the metal atom, cluster polarizability, and energy gap involved in the agostic interaction) has been constructed through a machine learning approach. This study demonstrates that the general mechanisms governing the very important process of C-H activation by diverse metal centers can be discovered by interpreting experimental data with artificial intelligence.

7.
Environ Geochem Health ; 46(5): 152, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578358

ABSTRACT

The Qinghai-Tibet Plateau has low anthropogenic carbon emissions and large carbon stock in its ecosystems. As a crucial region in terrestrial ecosystems responding to climate change, an accurate understanding of the distribution characteristics of soil carbon density holds significance in estimating the soil carbon storage capacity in forests and grasslands. It performs a crucial role in achieving carbon neutrality goals in China. The distribution characteristics of carbon and carbon density in the surface, middle, and deep soil layers are calculated, and the main influencing factors of soil carbon density changes are analyzed. The carbon density in the surface soil ranges from a minimum of 1.62 kg/m2 to a maximum of 52.93 kg/m2. The coefficient of variation for carbon is 46%, indicating a considerable variability in carbon distribution across different regions. There are substantial disparities, with geological background, land use types, and soil types significantly influencing soil organic carbon density. Alpine meadow soil has the highest carbon density compared with other soil types. The distribution of soil organic carbon density at three different depths is as follows: grassland > bare land > forestland > water area. The grassland systems in the Qinghai-Tibet Plateau have considerable soil carbon sink and storage potential; however, they are confronted with the risk of grassland degradation. The grassland ecosystems on the Qinghai-Tibet Plateau harbor substantial soil carbon sinks and storage potential. However, they are at risk of grassland degradation. It is imperative to enhance grassland management, implement sustainable grazing practices, and prevent the deterioration of the grassland carbon reservoirs to mitigate the exacerbation of greenhouse gas emissions and global warming. This highlights the urgency of implementing more studies to uncover the potential of existing grassland ecological engineering projects for carbon sequestration.


Subject(s)
Ecosystem , Soil , Tibet , Carbon/analysis , Grassland
8.
Dalton Trans ; 53(19): 8347-8355, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38666520

ABSTRACT

A fundamental understanding of the exact structural characteristics and reaction mechanisms of interface active sites is vital to engineering an energetic metal-support boundary in heterogeneous catalysis. Herein, benefiting from a newly developed high-temperature ion trap reactor, the reverse water-gas shift (RWGS) (CO2 + H2 → CO + H2O) catalyzed by a series of compositionally and structurally well-defined RhnVO3,4- (n = 3-7) clusters were identified under variable temperatures (298-773 K). It is discovered that the Rh5-7VO3,4- clusters can function more effectively to drive RWGS at relatively low temperatures. The experimentally observed size-dependent catalytic behavior was rationalized by quantum-chemical calculations; the framework of RhnVO3,4- is constructed by depositing the Rhn clusters on the VO3,4 "support", and a sandwiched base-acid-base [Rhout--Rhin+-VO3,4-; Rhout and Rhin represent the outer and inner Rh atoms, respectively] feature in Rh5-7VO3,4- governs the adsorption and activation of reactants as well as the facile desorption of the products. In contrast, isolated Rh5-7- clusters without the electronic modification of the VO3,4 "support" can only catalyze RWGS under relatively high-temperature conditions.

9.
Insects ; 15(3)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38535380

ABSTRACT

Quantitative real-time PCR (qRT-PCR) is a widely applied technique for accurately assessing the expression of target genes. In practice, the evaluation of gene expression requires appropriate reference genes. To screen reliable reference genes for evaluating gene expression via qRT-PCR in Mythimna loreyi, a notorious migratory pest across Asia, Africa, Europe, and Australia, we assessed the expression stability of 13 candidate reference genes in M. loreyi using the ΔCt method, BestKeeper, Normfinder, GeNorm, and the web-based comprehensive platform RefFinder. These reference genes include RPL10, RPL27, RPL32, RPS3, TATA-box, GAPDH, AK, Actin, EF, α-tubulin, SOD, 18S rRNA, and FTZ-F1, which is frequently employed in Lepidoptera insects. Our findings revealed that the performance of the candidate reference gene depended on experimental conditions. Specifically, RPL27 and RPL10 were the most suitable for evaluating expression changes across developmental stages, tissues, and adult ages. The optimal reference genes were recommended in specific experiment conditions, for instance, EF and RPS3 were recommended for mating status, AK and RPL10 were recommended for temperature treatments, RPL27 and FTZ-F1 were recommended for larva diet, and EF and RPL27 were recommended for adult diet treatments. Additionally, expression profiles of pheromone-binding protein 2 (MlorPBP2) and glutathione S-transferase (MlorGST1) were used to validate the reference genes. This study provides reference genes for the accurate normalization of qRT-PCR data, laying the groundwork for studying the expression of target genes in M. loreyi.

10.
Int J Pharm ; 655: 124030, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38521376

ABSTRACT

Disease-causing microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are among the primary contributors to morbidity and mortality of diarrhea in humans. Considering the challenges associated with antibiotic use, including antimicrobial resistance, this study aimed to develop a novel zinc-based agent for bacterial inactivation. To this end, zinc caproate (ZnCA) was synthesized using caproic acid (CA) and zinc oxide (ZnO) in anhydrous ethanol via the solvothermal method. Structural characterization techniques, including Fourier-transform infrared spectroscopy, single crystal X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy, revealed the bidentate bridging coordination of zinc atoms with CA. The resulting two-dimensional ZnCA network was found to be composed of a distinct lamellar pattern, without any evident inter-layer interactions. Powder X-ray diffraction analysis, elemental analysis, and melting point analysis confirmed that ZnCA had an average particle size of 1.320 µm, a melting point of 147.2 °C, and a purity exceeding 98 %. Remarkably, ZnCA demonstrated potent antibacterial activity against E. coli and S. aureus, which exceeded the antibacterial efficacy of ZnO. ZnCA exerted its antibacterial effects by inhibiting biofilm formation, disrupting cell membrane integrity, increasing cell membrane permeability, and altering intracellular Ca2+-Mg2+-ATPase activity. These findings highlight the potential of ZnCA as a promising antibiotic substitute for the treatment of diarrhea in humans.


Subject(s)
Metal Nanoparticles , Zinc Oxide , Humans , Zinc , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Caproates , Staphylococcus aureus , Escherichia coli , X-Ray Diffraction , Anti-Bacterial Agents/chemistry , Spectroscopy, Fourier Transform Infrared , Microbial Sensitivity Tests , Metal Nanoparticles/chemistry , Diarrhea
11.
Neurosurgery ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483168

ABSTRACT

BACKGROUND AND OBJECTIVES: The incidence of imminent new vertebral fracture (NVF) is notably high after vertebral augmentation (VA), but accurately assessing the imminent risk of NVF remains a great challenge. The aim of this study was to investigate whether the MRI-based vertebral bone quality (VBQ) score can predict the risk of imminent NVF after VA within a 2-year period. METHODS: A total of 135 patients age 50 years and older who suffered from painful osteoporotic vertebral compression fracture and treated with VA were enrolled in this retrospective study. Each patient's VBQ scores were calculated from T1-weighted, T2-weighted, and short tau inversion recovery sequences of preoperative lumbar MRI. The clinical factors and VBQ score were integrated to create a predictive model by using the logistic regression algorithm and visualize by nomogram. Receiver operating characteristic curve, calibration curve, and decision curve analyses were used to evaluate the predictive performance of the nomogram. RESULTS: The mean VBQ-T1WI and VBQ-T2WI scores of the NVF group were 4.61 ± 0.55 and 0.89 ± 0.14, respectively, which were significantly higher than those of the without NVF group (3.99 ± 0.54 and 0.79 ± 0.12, respectively, P < .001), as well as the VBQ-combined score (0.75 ± 1.30 vs -0.80 ± 1.26, P < .001), which is the combination of VBQ-T1WI and VBQ-T2WI scores. On multivariate analysis, the predictors of imminent NVF included age (odds ratio [OR] = 1.064, 95% CI = 1.009-1.122, P = .022), previous vertebral fracture (OR = 2.089, 95% CI = 0.888-4.915, P = .091), and VBQ-combined score (OR = 2.239, 95% CI = 1.529-3.279, P < .001). The nomogram achieved superior performance with an area under the receiver operating characteristic curve of 0.838 (95% CI: 0.773-0.904) in predicting the imminent NVF compared to the clinical factors or VBQ-combined score alone. CONCLUSION: The VBQ score obtained from lumbar MRI can be used to assess the VBQ and predict the imminent NVF after VA in patients with osteoporotic vertebral compression fracture.

12.
Chemphyschem ; 25(9): e202400116, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38380870

ABSTRACT

Activation and transformation of methane is one of the "holy grails" in catalysis. Understanding the nature of active sites and mechanistic details via spectroscopic characterization of the reactive sites and key intermediates is of great challenge but crucial for the development of novel strategies for methane transformation. Herein, by employing photoelectron velocity-map imaging (PEVMI) spectroscopy in conjunction with quantum chemistry calculations, the Lewis acid-base pair (LABP) of [Taδ+-Nδ-] unit in Ta2N3 - acting as an active center to accomplish the heterolytic cleavage of C-H bond in CH4 has been confirmed by direct characterization of the reactant ion Ta2N3 - and the CH4-adduct intermediate Ta2N3CH4 -. Two active vibrational modes for the reactant (Ta2N3 -) and four active vibrational modes for the intermediate (Ta2N3CH4 -) were observed from the vibrationally resolved PEVMI spectra, which unequivocally determined the structure of Ta2N3 - and Ta2N3CH4 -. Upon heating, the LABP intermediate (Ta2N3CH4 -) containing the NH and Ta-CH3 unit can undergo the processes of C-N coupling and dehydrogenation to form the product with an adsorbed HCN molecule.

13.
Waste Manag ; 174: 420-428, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38104414

ABSTRACT

Upcycling waste plastics into valuable carbon nanotubes (CNTs) and hydrogen via catalytic pyrolysis is a sustainable strategy to mitigate white pollution. However, real-world plastics are complex and generally contain organic impurities, such as cellulose, which have a non-negligible impact on the catalytic pyrolysis process and product distribution. In this study, cellulose was chosen as a model compound to distinguish the effects of oxygen-containing components on the CNTs and hydrogen production during the catalytic pyrolysis of waste polypropylene. Different amounts of cellulose were mixed with polypropylene to regulate the O/C mass ratio of the feedstock, and the relationship between the O/C mass ratio and the yield of products has been built quantificationally. The results revealed that the relative content of CNTs increased to over 95%, and the stability and purity of carbon deposition increased accordingly when the O/C mass ratio is 0.05. This could be ascribed to the etching effects caused by small amounts of H2O and CO2 on amorphous carbon. However, further increasing the amount of cellulose caused the deactivation of the Fe-Ni catalyst. This not only decreased the carbon yield but had an adverse impact on its morphology and graphitization, leading to the increase of amorphous carbon. This study can provide fundamental guidance for the efficient utilization of waste plastics that take advantage of organic impurities in waste plastic to promote the formation of high-purity CNTs.


Subject(s)
Nanotubes, Carbon , Polypropylenes , Plastics , Cellulose , Hydrogen , Pyrolysis , Catalysis
14.
Nano Lett ; 24(1): 331-338, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38108571

ABSTRACT

Solar-driven photothermal catalytic H2 production from lignocellulosic biomass was achieved by using 1T-2H MoS2 with tunable Lewis acidic sites as catalysts in an alkaline aqueous solution, in which the number of Lewis acidic sites derived from the exposed Mo edges of MoS2 was successfully regulated by both the formation of an edge-terminated 1T-2H phase structure and tunable layer number. Owing to the abundant Lewis acidic sites for the oxygenolysis of lignocellulosic biomass, the 1T-2H MoS2 catalyst shows high photothermal catalytic lignocellulosic biomass-to-H2 transformation performance in polar wood chips, bamboo, rice straw corncobs, and rice hull aqueous solutions, and the highest H2 generation rate and solar-to-H2 (STH) efficiency respectively achieves 3661 µmol·h-1·g-1 and 0.18% in the polar wood chip system under 300 W Xe lamp illumination. This study provides a sustainable and cost-effective method for the direct transformation of renewable lignocellulosic biomass to H2 fuel driven by solar energy.

15.
Insects ; 14(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38132633

ABSTRACT

Quantitative real-time PCR (qRT-PCR) is widely accepted as a precise and convenient method for quantitatively analyzing the expression of functional genes. The data normalization strongly depends upon stable reference genes. The bean bug, Riptortus pedestris (Hemiptera: Alydidae), is a significant pest of leguminous crops and broadly distributed across Southeast Asia. In this study, a total of 16 candidate reference genes (RPL32, RPS23, SDHA, UBQ, UCCR, GST, TATA-box, HSP70, GAPDH, RPL7A, SOD, RPS3, Actin, α-tubulin, AK, and EF1) were carefully chosen in R. pedestris, and their expression levels were assessed across various conditions, including different developmental stages, diverse tissues, temperature treatments, adult age, molting time, and mating status. Following this, the stability of these reference genes was evaluated using four algorithms (ΔCt, GeNorm, NormFinder, and BestKeeper). Ultimately, the comprehensive rankings were determined using the online tool RefFinder. Our results demonstrate that the reference gene for qRT-PCR analysis in R. pedestris is contingent upon the specific experimental conditions. RPL7A and EF1 are optimal reference genes for developmental stages. Furthermore, α-tubulin and EF1 exhibit the most stable expression across various adult tissues. RPL32 and RPL7A exhibit the most stable expression for adult age. For nymph age, RPL32 and SOD display the most stable expression. For temperature conditions, RPS23 and RPL7A were identified as the most suitable for monitoring gene expression. Lastly, we verified the practicability of evaluating expression levels of odorant-binding protein 37 (RpedOBP37) and cytochrome P450 6a2 (RpedCYP6) throughout developmental stages, tissues, and temperature conditions. These findings are a significant addition to the qRT-PCR analysis studies on R. pedestris, serving as a fundamental groundwork for future investigations on stable reference genes in R. pedestris as well as other organisms.

16.
Diagnostics (Basel) ; 13(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37998595

ABSTRACT

The occurrence of new vertebral fractures (NVFs) after vertebral augmentation (VA) procedures is common in patients with osteoporotic vertebral compression fractures (OVCFs), leading to painful experiences and financial burdens. We aim to develop a radiomics nomogram for the preoperative prediction of NVFs after VA. Data from center 1 (training set: n = 153; internal validation set: n = 66) and center 2 (external validation set: n = 44) were retrospectively collected. Radiomics features were extracted from MRI images and radiomics scores (radscores) were constructed for each level-specific vertebra based on least absolute shrinkage and selection operator (LASSO). The radiomics nomogram, integrating radiomics signature with presence of intravertebral cleft and number of previous vertebral fractures, was developed by multivariable logistic regression analysis. The predictive performance of the vertebrae was level-specific based on radscores and was generally superior to clinical variables. RadscoreL2 had the optimal discrimination (AUC ≥ 0.751). The nomogram provided good predictive performance (AUC ≥ 0.834), favorable calibration, and large clinical net benefits in each set. It was used successfully to categorize patients into high- or low-risk subgroups. As a noninvasive preoperative prediction tool, the MRI-based radiomics nomogram holds great promise for individualized prediction of NVFs following VA.

17.
Environ Monit Assess ; 195(12): 1422, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37932466

ABSTRACT

The Qinghai-Tibet Plateau stands as the loftiest geographical area on our planet, frequently denoted as the "Crown of the Globe." To acquire an exhaustive comprehension of the heavy metal contamination situation in the topsoil of Maqin County, Qinghai Province, a total of 1616 surface soil specimens were gathered across a 6300 km2 area. An examination was carried out on 12 metallic elements to investigate the impact of diverse geological contexts, soil categorizations, and land utilization practices on the levels of heavy metals. Additionally, the fundamental factors contributing to these trends were probed. The findings unveiled that the mean levels of the 12 metallic elements in the topsoil of Maqin County surpassed or equaled the baseline values of soil heavy metal concentrations within the research region. The coefficients of variation (CV) values for Hg, Sb, Ni, and Pb exceeded 30%, with Hg showing strong variation. The overall pollution level in the study area was classified as mild, posing a moderate ecological risk. In this study, we performed a multi-factor analysis of the significant differences in heavy metal concentrations among different geological backgrounds, soil types, and land-use types. The results showed that geological background had extremely significant impacts on elements such as Ba, Be, Cd, Cr, Cu, Hg, Ni, Sb, Tl, and Zn (p < 0.01). Soil type had an extremely significant influence on Be, Cd, Cu, and Zn (p < 0.01), as well as a significant influence on Ba (p < 0.05). Land-use type had an extremely significant impact on Ba (p < 0.01) and a significant impact on Cd (p < 0.05). Building upon the amalgamation of the outcomes from the Pearson correlation analysis, it was inferred that the main source of heavy metals in Maqin County, Qinghai Province, was the geological background.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Cadmium/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Risk Assessment , China , Metals, Heavy/analysis , Soil , Mercury/analysis , Environmental Pollution/analysis
18.
Int J Mol Sci ; 24(22)2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38003384

ABSTRACT

In recent years, the non-covalent interactions between chalcogen centers have aroused substantial research interest because of their potential applications in organocatalysis, materials science, drug design, biological systems, crystal engineering, and molecular recognition. However, studies on π-hole-type chalcogen∙∙∙chalcogen interactions are scarcely reported in the literature. Herein, the π-hole-type intermolecular chalcogen∙∙∙chalcogen interactions in the model complexes formed between XO2 (X = S, Se, Te) and CH3YCH3 (Y = O, S, Se, Te) were systematically studied by using quantum chemical computations. The model complexes are stabilized via one primary X∙∙∙Y chalcogen bond (ChB) and the secondary C-H∙∙∙O hydrogen bonds. The binding energies of the studied complexes are in the range of -21.6~-60.4 kJ/mol. The X∙∙∙Y distances are significantly smaller than the sum of the van der Waals radii of the corresponding two atoms. The X∙∙∙Y ChBs in all the studied complexes except for the SO2∙∙∙CH3OCH3 complex are strong in strength and display a partial covalent character revealed by conducting the quantum theory of atoms in molecules (QTAIM), a non-covalent interaction plot (NCIplot), and natural bond orbital (NBO) analyses. The symmetry-adapted perturbation theory (SAPT) analysis discloses that the X∙∙∙Y ChBs are primarily dominated by the electrostatic component.


Subject(s)
Chalcogens , Chalcogens/chemistry , Hydrogen Bonding , Quantum Theory , Static Electricity
19.
ACS Appl Mater Interfaces ; 15(43): 50206-50215, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37871167

ABSTRACT

The conversion of lignocellulosic biomass to chemical fuel can achieve the sustainable use of lignocellulosic biomass, but it was limited by the lack of an effective conversion strategy. Here, we reported a unique approach of photothermal catalysis by using MoS2-reduced graphene oxide (MoS2/RGO) as the catalyst to convert lignocellulosic biomass into H2 fuel in alkaline solution. The RGO acting as a support for the growth of MoS2 results in the high exposed Mo edges, which act as efficient Lewis acidic sites for the oxygenolysis of lignocellulosic biomass dissolved in alkaline solution. The broad light absorption capacity and abundant Lewis acidic sites make MoS2/RGO to be efficient catalysts for photothermal catalytic H2 production from lignocellulosic biomass, and the H2 generation rate with respect to catalyst under 300 W Xe lamp irradiation in cellulose, rice straw, wheat straw, polar wood chip, bamboo, rice hull, and corncob aqueous solution achieve 223, 168, 230, 564, 390, 234, and 55 µmol·h-1·g-1, respectively. It is believed that this photothermal catalysis is a simple and "green" approach for the lignocellulosic biomass-to-H2 conversion, which would have great potential as a promising approach for solar energy-driven H2 production from lignocellulosic biomass.

20.
Water Res ; 245: 120566, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37683521

ABSTRACT

Volatile and semi-volatile organic compounds (VOCs and SVOCs) carried by landfilled wastes may enter leachate, and require appropriate treatment before discharge. However, the driving factors of the entry of VOCs and SOVCs into leachate, their removal characteristics during leachate treatment and the dominant factors remain unclear. A global survey of the VOCs and SOVCs in leachate from 103 landfill sites combined with 27 articles on leachate treatment was conducted to clarify the abovementioned question. The results showed that SVOCs such as polycyclic aromatic hydrocarbons (PAHs), phthalate acid esters (PAEs) and phenols were the most frequently detected in leachate on a global scale. However, four kinds of VOCs, i.e., toluene, ethylbenzene, xylenes and benzene, were frequently detected at high concentrations in landfill leachate as well. The concentrations of VOCs and SVOCs in leachate ranged from 1 × 10° to 1 × 108 ng/L. Solubility was a key factor driving the entry of VOCs and SOVCs into leachate, and higher solubility enables higher detectable concentrations in leachate (P<0.05). It was easiest to remove monocyclic aromatic hydrocarbons (MAHs) from leachate, followed by phenols and PAHs, and it was most difficult to remove PAEs. In terms of removing MAHs, the anoxic/oxic (A/O) process and the sequential batch reactor (SBR) process were comparable to the advanced oxidization process and far superior to the ultrafiltration and nanofiltration processes, and the removal rate increased with an increase in the Henry's constant and/or the hydrophilicity of the contaminants during the A/O and SBR processes (P<0.05). There were no significant differences among biological, advanced oxidation and reverse osmosis processes in the removal of phenolic. In terms of removing PAHs, the A/O process was comparable to the advanced oxidization process and more efficient than the other treatment processes. As to removing PAEs, the membrane bioreactor process was almost the same efficient as the advanced oxidization process and far more efficient than the other biological treatment processes. Future research should focus on the pollution of atmospheric VOCs and SVOCs near aeration units in leachate treatment plants, as well as the health risk assessment of VOCs and SVOCs in the treated leachate effluent. To the best of our knowledge, this is the first review regarding the occurrence and removal of VOCs and SVOCs from landfill leachates worldwide.


Subject(s)
Hydrocarbons, Aromatic , Polycyclic Aromatic Hydrocarbons , Volatile Organic Compounds , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...