Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
J Hazard Mater ; 477: 135320, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067294

ABSTRACT

Microbial immobilization technology is considered an efficient bioremediation method for chromium (Cr) pollution. However, it is currently unclear which strain is more beneficial for the remediation of Cr-contaminated water and soil. Therefore, corn straw biochar was used as a carrier to prepare materials for fixing the endophytes Serratia sp. Y-13 (BSR1), Serratia nematodiphila (BSR2), Lysinibacillus sp. strain SePC-36 (BLB1), Lysinibacillus mangiferihumi strain WK63 (BLB2) and the commercial bacteria Shewanella oneidensis MR-1 (BSW). The results demonstrated that, compared with BSW, endophyte-loaded biochar (especially BSR1) was more effective at remediating Cr pollution in water and soil. Endophyte-loaded biochar reduced the abundance of soil pathogenic bacteria, enhanced the number of beneficial plant endophytes, reduced the soil Cr(VI) concentration, improved soil fertility, reduced the plant Cr concentration and improved the yield of lettuce. Redundancy analysis (RDA) and structural equation modelling (PLS-PM) suggested that soil microbes are closely related to soil Cr(VI), plant fresh weight and soil organic matter, whereas endophyte-loaded biochar directly influences plant cell motility pathways by altering plant microbes. This study represents a pioneering investigation into the efficacy of endophyte-loaded biochar as a remediation strategy for Cr pollution.

2.
Environ Pollut ; : 124619, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067738

ABSTRACT

Biochar (BC) has been proven effective in promoting the production of safety food in cadmium (Cd)-polluted soil and the impact can be further enhanced through interaction with compost (CM). However, there existed unclear impacts of biochar with varying particle sizes in conjunction with compost on microbiome composition, rhizosphere functions, and soil health. Hence, in this study, two bulk-biochar derived from wood chips and pig manure were fabricated into nano-biochar using a ball-milling method. Subsequently, in a field experiment, the root-associated bacterial community and microbial functions of lettuce were evaluated in respond to Cd-contaminated soil remediated with nano/bulk-BCCM. The results showed that compared to bulk-BCCM, nano-BCCM significantly reduced the Cd concentration in the edible part of lettuce and the available Cd in the soil. Both nano-BCCM and bulk-BCCM strongly influenced the composition of bacterial communities in the four root-associated niches, and enhanced rhizosphere functions involved in nitrogen, phosphorus, and carbon cycling, as well as the relative abundance and biodiversity of keystone modules in rhizosphere soil. Furthermore, soil quality index analysis indicated that nano-BCCM exhibited greater potential than bulk-BCCM in maintaining soil health. The data revealed that nano-BCCM could regulate the Cd concentration in lettuce shoot by promoting microbial biodiversity of keystone modules in soil-root continuum and rhizosphere bacterial functions. These findings suggest that nano-biochar compost associations can be a superior strategy for enhancing microbial functions, maintaining soil health, and ensuring crop production safety in the Cd-contaminated soil compared to the mix of bulk-biochar and compost.

3.
Sci Total Environ ; 932: 173029, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38719039

ABSTRACT

Plant growth regulators (PGR) and plant growth-promoting bacteria (PGPB) have the potential in phytoremediation of heavy metals (HMs) contaminated soils. However, their sole application may not yield the optimal results, thus necessitating the combined application. The present study aimed to enhance the phytoremediation efficiency of Sedum alfredii Hance (S. alfredii) in acidic and alkaline soils through the combination of PGR (Brassinolide, BR) and PGPB (Pseudomonas fluorescens, P. fluorescens). The combination of BR and P. fluorescens (BRB treatment) effectively increased the removal efficiency of S. alfredii for Cd, Pb, and Zn by 355.2 and 155.3 %, 470.1 and 128.9 %, and 408.4 and 209.6 %, in acidic and alkaline soils, respectively. Moreover, BRB treatment led to a substantial increase in photosynthetic pigments contents and antioxidant enzymes activities, resulting in a remarkable increase in biomass (86.71 and 47.22 %) and dry mass (101.49 and 42.29 %) of plants grown in acidic and alkaline soils, respectively. Similarly, BRB treatment significantly elevated the Cd (109.4 and 71.36 %), Pb (174.9 and 48.03 %), and Zn levels (142.8 and 104.3 %) in S. alfredii shoots, along with cumulative accumulation of Cd (122.7 and 79.47 %), Pb (183.8 and 60.49 %), and Zn (150.7 and 117.9 %), respectively. In addition, the BRB treatment lowered the soil pH and DTPA-HMs contents, while augmenting soil enzymatic activities, thereby contributing soil microecology and facilitating the HMs absorption and translocation by S. alfredii to over-ground tissues. Furthermore, the evaluation of microbial community structure in phyllosphere and rhizosphere after remediation revealed the shift in microbial abundance. The combined treatment altered the principal effects on S. alfredii HMs accumulation from bacterial diversity to the soil HMs availability. In summary, our findings demonstrated that synergistic application of BR and P. fluorescens represents a viable approach to strengthen the phytoextraction efficacy of S. alfredii in varying soils.


Subject(s)
Biodegradation, Environmental , Metals, Heavy , Plant Growth Regulators , Pseudomonas fluorescens , Sedum , Soil Pollutants , Soil , Sedum/metabolism , Soil Pollutants/metabolism , Metals, Heavy/metabolism , Plant Growth Regulators/metabolism , Soil/chemistry , Pseudomonas fluorescens/metabolism , Soil Microbiology
4.
J Colloid Interface Sci ; 662: 695-706, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38368827

ABSTRACT

Developing efficient heterojunction photocatalysts with enhanced charge transfer and reduced recombination rates of photogenerated carriers is crucial for harnessing solar energy in the photocatalytic CO2 reduction into renewable fuels. This study employed electrostatic self-assembly techniques to construct a 3D Bi2WO6/ZnIn2S4 direct Z-scheme heterojunctions. The unique 3D structure provided abundant active sites and facilitated CO2 adsorption. Moreover, the optimized Bi2WO6/ZnIn2S4 composite demonstrated an impressive CH4 yield of 19.54 µmol g-1 under 4 h of simulated sunlight irradiation, which was about 8.73 and 16.30-fold higher than pure ZnIn2S4 and Bi2WO6. The observed enhancements in photocatalytic performance are attributed to forming a direct Z-scheme heterojunction, which effectively promotes charge transport and migration. This research introduces a novel strategy for constructing photocatalysts through the synergistic effect of morphological interface modifications.

5.
Sci Total Environ ; 913: 169788, 2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38181951

ABSTRACT

The phytoremediation efficiency of plants in removing the heavy metals (HMs) might be influenced by their growth status and accumulation capacity of plants. Herein, we conducted a lab-scale experiment and a field try out to assess the optimal plant growth regulators (PGRs) including indole-3-acetic acid (IAA)/brassinolide (BR)/abscisic acid (ABA) in improving the phytoextraction potential of Sedum alfredii Hance (S. alfredii). The results of pot experiment revealed that application of IAA at 0.2 mg/L, BR at 0.4 mg/L, and ABA at 0.2 mg/L demonstrated notable potential as optimal dosage for Cd/Pb/Zn phytoextraction in S. alfredii. The findings of subcellular level of Cd/Pb/Zn in leaves showed that IAA (0.2 mg/L), BR (0.4 mg/L) or ABA (0.2 mg/L) promoted the HMs storage in the soluble and cell wall fraction, therefore contributing HMs subcellular compartmentation. In addition, application of PGRs notably enhanced the antioxidant system (SOD, CAT, POD, APX activities) while reducing lipid peroxidation (MDA content) in S. alfredii, consequently improving HMs tolerance and growth of S. alfredii. Moreover, the results of field trial showed that application of BR, IAA, or ABA+BR substantially improved the growth of S. alfredii by inducing plants biomass and augmenting the levels of photosynthetic pigment contents. Notably, ABA+BR noticed the highest theoretical biomass by 42.9 %, followed by IAA (41.6 %), and BR (36.4 %), as compared with CK. Additionally, ABA+BR treatment showed effectiveness in removing the Cd by 103.4 %, while BR and IAA led to a significant increase of Pb and Zn removal by 239 % and 116 %, respectively, when compared with CK. Overall, the results of this study highlights that the foliar application of IAA, BR, or ABA+BR can serve as viable strategy to boosting phytoremediation efficiency of S. alfredii in contaminated soil by improving the biomass and metal accumulation in harvestable parts.


Subject(s)
Metals, Heavy , Sedum , Soil Pollutants , Cadmium/analysis , Plant Growth Regulators , Lead , Metals, Heavy/analysis , Abscisic Acid , Biodegradation, Environmental , Soil , Soil Pollutants/analysis , Plant Roots/chemistry
6.
Environ Sci Pollut Res Int ; 31(3): 3696-3706, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38091222

ABSTRACT

Intercropping crops with hyperaccumulators is a proven model for coupling crop safety production and soil heavy metal remediation. And both crop genotypes and soil properties might have great impacts on the effect of intercropping. Therefore, a greenhouse pot experiment was designed to investigate the effects of intercropping different tomato varieties with the cadmium (Cd) hyperaccumulator Sedum alfredii Hance (S. alfredii Hance) on different soils. The results showed that intercropping promoted Cd uptake by S. alfredii Hance and reduced soil total Cd concentration. There was no significant effect of intercropping on tomato yield and Cd concentration. Different tomato varieties had different effects on tomato yield and Cd concentration. The yield of cherry tomato was 1.04 times higher than that of common large fruit tomato, while the Cd concentration in all parts was lower than that of common large fruit tomato. Different typical zonal soils had different effects on tomato production and soil remediation. And among the four studied soils, tomatoes grown on ZJ soil had the highest yields and lowest fruit Cd concentration, making them more suitable for remediation coupled with safety production. This study provided a comprehensive analysis of tomato production benefits and soil remediation effects, which could be useful as a guide in vegetable safety production coupled with soil remediation practices in the Cd-contaminated greenhouse.


Subject(s)
Sedum , Soil Pollutants , Solanum lycopersicum , Cadmium/analysis , Soil , Soil Pollutants/analysis , Biodegradation, Environmental , Crop Production
7.
Environ Sci Pollut Res Int ; 30(55): 117277-117287, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37864699

ABSTRACT

The main purpose of applying organic or inorganic amendments is to guarantee crop safe production in heavy metal contaminated soil. However, previous studies showed that the effects of organic or inorganic composite amendments on the cadmium (Cd) concentration of lettuce (Lactuca sativa var. ramosa Hort) were inconsistent. Accordingly, a sixty-day pot experiment was carried out to examine the impacts of the inorganic materials (lime, L and zeolite, Z), organic materials (biochar, B and compost, C), and their combination on the immobilization of Cd in soil and its uptake by lettuce. The objective was to identify the most suitable soil amendment combination that promotes safe lettuce production. The results revealed that the combined application of BC, LZC, and LBC significantly increased the plant height by 11.09-28.04% and fresh weight by 183.47-207.67%. This improvement can be attributed to enhanced soil quality, such as increased dissolved organic carbon (DOC) by 70.19-80.42%, soil respiration (SR) by 29.04-38.46%, and soil microbial carbon content (SMC) by 36.94-46.63%. Compared to inorganic fertilizers and their combination with organic amendments, organic amendments had a significant impact on reducing shoot Cd concentration by 33.93%-56.55%, while increasing the activity of catalase by 138.87-186.86%. And soil available Cd measured by diffusive gradients in thin-films (DGT-Cd) decreased 24.73-88.13% in all treatments. Correlation analysis showed that plant Cd concentration was significantly correlated with soil pH, SR, cation exchange capacity (CEC), DOC and SMC. These results demonstrated that organic amendments, especially the combination of biochar and compost, have greater potential than inorganic amendments and inorganic-organic combinations for realizing safe production of lettuce and improving soil quality in the Cd moderately contaminated acid farmland.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Cadmium/analysis , Lactuca , Metals, Heavy/analysis , Charcoal/chemistry , Soil/chemistry , Soil Pollutants/analysis
8.
J Colloid Interface Sci ; 650(Pt A): 807-815, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37450969

ABSTRACT

The development of well-defined nanomaterials as non-noble metal electrocatalysts has broad application prospect for hydrogen generation technology. Recently, multi-metal electrocatalysts for hydrogen evolution reaction (HER) have attracted extensive attention due to their high catalytic performance arising from the synergistic effect of multi-metal interaction. However, most multi-metal catalysts suffer from the limited synergistic effect because of poor interfacial compatibility between different components. Here, a novel multi-metal catalyst (Ni/MoO2@CoFeOx) nanosheet with a crystalline/amorphous structure is demonstrated, which shows high HER activity. Ni/MoO2@CoFeOx exhibits an ultra-low overpotential of 18, 39, and 93 mV at 10 mA cm-2 in alkaline water, alkaline seawater and natural seawater, respectively, which outperformances most of the state-of-the-art non-noble metal compounds. In addition, the catalyst shows exceptional stability under 500 mA cm-2 in alkaline solution. In-situ Raman and other advanced structural characterization confirms the excellent catalytic activity is mainly contributed by: (1) the strong synergistic effect of multi-metal components provides multiple active sites in the catalytic process; (2) the crystalline/amorphous interface in Ni/MoO2@CoFeOx boosts the catalytically active sites and structure stability; (3) the crystalline phase enhances the intrinsic conductivity greatly; and (4) the amorphous phase provides abundant unsaturated sites for improved intrinsic catalytic activity. This work provides a feasible way to design electrocatalyst with high activity and stability for practical applications.

9.
Toxics ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37112598

ABSTRACT

Chromium (Cr) is a major pollutant affecting the environment and human health and microbial remediation is considered to be the most promising technology for the restoration of the heavily metal-polluted soil. However, the difference between rhizosphere and endophytic bacteria on the potential of crop safety production in Cr-contaminated farmland is not clearly elucidated. Therefore, eight Cr-tolerant endophytic strains of three species: Serratia (SR-1~2), Lysinebacillus (LB-1~5) and Pseudomonas (PA-1) were isolated from rice and maize. Additionally, one Cr-tolerant strain of Alcaligenes faecalis (AF-1) was isolated from the rhizosphere of maize. A randomized group pot experiment with heavily Cr-contaminated (a total Cr concentration of 1020.18 mg kg-1) paddy clay soil was conducted and the effects of different bacteria on plant growth, absorption and accumulation of Cr in lettuce (Lactuca sativa var. Hort) were compared. The results show that: (i) the addition of SR-2, PA-1 and LB-5 could promote the accumulation of plant fresh weight by 10.3%, 13.5% and 14.2%, respectively; (ii) most of the bacteria could significantly increase the activities of rhizosphere soil catalase and sucrase, among which LB-1 promotes catalase activity by 224.60% and PA-1 increases sucrase activity by 247%; (iii) AF-1, SR-1, LB-1, SR-2, LB-2, LB-3, LB-4 and LB-5 strains could significantly decrease shoot the Cr concentration by 19.2-83.6%. The results reveal that Cr-tolerant bacteria have good potential to reduce shoot Cr concentration at the heavily contaminated soil and endophytic bacteria have the same or even better effects than rhizosphere bacteria; this suggests that bacteria in plants are more ecological friendly than bacteria in soil, thus aiming to safely produce crops in Cr-polluted farmland and alleviate Cr contamination from the food chain.

10.
Sci Total Environ ; 875: 162700, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36906036

ABSTRACT

Intercropping with hyperaccumulators is believed to be an important and efficient way to achieve simultaneous safe agricultural production and phytoremediation of polluted soils. However, some studies have suggested that this technique might facilitate the uptake of heavy metals by crops. To investigate the effects of intercropping on the heavy metal contents of plants and soil, data from 135 global studies were collected and analyzed by meta-analysis. The results showed that intercropping could significantly reduce the contents of heavy metals in the main plants and soils. Plant species was the main factor that affected plant and soil metal contents in the intercropping system, and the heavy metal content could be significantly reduced when members of the Poaceae and Crassulaceae were used as main plants or when legumes were used as intercropped plants. Among all the intercropped plants, the best one for removing heavy metals from the soil was a Crassulaceae hyperaccumulator. These results not only highlight the main factors affecting intercropping systems but also provide reliable reference information for the practice of safe agricultural production coupled with phytoremediation of heavy metal-contaminated farmland.


Subject(s)
Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/analysis , Metals, Heavy/analysis , Soil , Crops, Agricultural , Cadmium/analysis
11.
Sensors (Basel) ; 22(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36015765

ABSTRACT

Traffic-related air pollution (TRAP) was monitored using a mobile sensor network on 125 urban taxis in Shanghai (November 2019/December 2020), which provide real-time patterns of air pollution at high spatial resolution. Each device determined concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), and PM2.5, which characterised spatial and temporal patterns of on-road pollutants. A total of 80% road coverage (motorways, trunk, primary, and secondary roads) required 80-100 taxis, but only 25 on trunk roads. Higher CO concentrations were observed in the urban centre, NO2 higher in motorway concentrations, and PM2.5 lower in the west away from the city centre. During the COVID-19 lockdown, concentrations of CO, NO2, and PM2.5 in Shanghai decreased by 32, 31 and 41%, compared with the previous period. Local contribution related to traffic emissions changed slightly before and after COVID-19 restrictions, while changing background contributions relate to seasonal variation. Mobile networks are a real-time tool for air quality monitoring, with high spatial resolution (~200 m) and robust against the loss of individual devices.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , COVID-19/epidemiology , China , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis
12.
Toxics ; 10(7)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35878301

ABSTRACT

Single or combined plant growth-promoting bacteria (PGPB) strains were widely applied as microbial agents in cadmium (Cd) phytoextraction since they could promote plant growth and facilitate Cd uptake. However, the distinct functional effects between single and combined inoculants have not yet been elucidated. In this study, a field experiment was conducted with single, double and triple inoculants to clarify their divergent impacts on plant growth, Cd uptake and accumulation at different growth stages of Brassica juncea L. by three different PGPB strains (Cupriavidus SaCR1, Burkholdria SaMR10 and Sphingomonas SaMR12). The results show that SaCR1 + SaMR10 + SaMR12 combined inoculants were more effective for growth promotion at the bud stage, flowering stage, and mature stage. Single/combined PGPB agents of SaMR12 and SaMR10 were more efficient for Cd uptake promotion. In addition, SaMR10 + SaMR12 combined the inoculants greatly facilitated Cd uptake and accumulation in shoots, and enhanced the straw Cd extraction rates by 156%. Therefore, it is concluded that the application of PGPB inoculants elevated Cd phytoextraction efficiency, and the combined inoculants were more conductive than single inoculants. These results enriched the existing understanding of PGPB agents and provided technical support for the further exploration of PGPB interacting mechanisms strains on plant growth and Cd phytoextraction, which helped establish an efficient plant-microbe combined phytoremediation system and augment the phytoextraction efficiency in Cd-contaminated farmlands.

13.
Sci Total Environ ; 837: 155626, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35504393

ABSTRACT

Electric vehicles (EVs) have been promoted acceleratively to reduce greenhouse gas (GHG) emissions, however, the GHG emission reduction potential of different powertrain EVs has not been investigated thoroughly. In this study, we firstly quantified and compared the GHG emissions of different powertrain vehicles in a life cycle perspective with particular focus on energy and climate consequences, for current and future integrated scenarios, to facilitate carbon reduction assessment for Shanghai. Four major types of EVs were considered. The results show that life cycle total energy consumption and GHG emissions of all EVs are lower than that of gasoline internal combustion engine vehicles (GICEVs), among which battery-powered electric vehicles (BEVs) is the lowest. Compared with GICEVs, the total energy use and GHG emissions of BEVs decrease by 34.2% and 41.7% respectively. As the electrification of vehicle powertrain system innovates, the life cycle emissions of GHG are gradually concentrated to the upstream stage. The sensitivity analysis demonstrates that life cycle GHG emissions of vehicles are most sensitive to the proportion of thermal power than other three parameters (utilization rate of recycled steel, vehicle lifetime and curb weight). The scenario analysis indicates that BEVs present the more favorable carbon emission decline performance over other EVs from a long-term perspective. It is estimated that up to 12.5 million tons of GHG emissions could be reduced under the optimistic scenario in 2050 in Shanghai. In the process of energy conversion from oil to electricity in transport in Shanghai, BEVs should be constantly promoted.


Subject(s)
Greenhouse Gases , Vehicle Emissions , Carbon , China , Electricity , Gasoline/analysis , Greenhouse Effect , Motor Vehicles , Vehicle Emissions/analysis
14.
Environ Sci Pollut Res Int ; 29(47): 71810-71825, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35604595

ABSTRACT

Organic and inorganic mixtures can be developed as immobilizing agents that could reduce heavy metal accumulation in crops and contribute to food safety. Here, inorganic materials (lime, L; zeolite, Z; and sepiolite, S) and organic materials (biochar, B, and compost, C) were selectively mixed to produce six composite soil amendments (LZBC, LSBC, LZC, LZB, LSC, and LSB). Given the fact that LZBC showed the best performance in decreasing soil Cd availability in the incubation experiment, it was further applied in the field condition with 14 vegetables as the test crops to investigate its effects on crop safety production in polluted greenhouse. The results showed that LZBC addition elevated rhizosphere soil pH by 0.1-2.0 units and reduced soil Cd availability by 1.85-37.99%. Both the biomass and the yields of edible parts of all vegetables were improved by LZBC addition. However, LZBC addition differently affected Cd accumulation in edible parts of the experimental vegetables, with the observation that Cd contents were significantly reduced in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., but increased in the three species of Lactuca sativa. Further health risk assessment showed that LZBC application significantly decreased daily intake of metal (DIM), health risk index (HRI), and target hazard quotient (THQ) for Cd in Allium fistulosum L., Amaranthus tricolor L., and Coriandrum sativum Linn., whereas increased all the indexes in Lactuca sativa. Our results showed that the effect of a composite amendment on Cd accumulation in different vegetables could be divergent and species-dependent, which suggested that it is essential to conduct a pre-experiment to verify applicable species for a specific soil amendment designed for heavy metal immobilization.


Subject(s)
Metals, Heavy , Oryza , Soil Pollutants , Zeolites , Cadmium/analysis , Metals, Heavy/analysis , Soil/chemistry , Soil Pollutants/analysis , Vegetables
15.
J Environ Manage ; 310: 114732, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35228164

ABSTRACT

The emission of air pollutants from the municipal solid waste (MSW) incineration is one of the major concerns in air pollution. The up-to-date emission situation for Chinese MSW incineration is largely unknown. The emission factors (EFs) are the key parameters to estimate the emissions from MSW incineration. The localized EFs from MSW incineration in Shanghai, China were established using continuous emission monitoring system data from 2017 to 2019. Our results showed that the EFs were 9.80 g t-1 of PM, 46.62 g t-1 of SO2, 812.68 g t-1 of NOx, 25.84 g t-1 of CO, and 17.49 g t-1 of HCl for the period 2017-2019, nearly 1.7-24.2 times lower than those in 2010, implying that the current EFs should be updated to avoid overestimation of MSW emissions in China. Compared with 2010, the emissions of PM, SO2, CO, and HCl in 2019 were significantly reduced by 84%, 69%, 47%, and 72%, respectively, except for NOx with a 106% increase, although the corresponding MSW incineration amount increased by 356%. The current levels of air pollutants from MSW incineration have already met the current national emission standard as well as the stricter standard of the European Union (98.87%-99.91%). Our findings suggest that China should update the current standards of MSW incineration, which can be a benefit for the prevention and control of MSW incineration in the future. It is still challenging to control NOx emissions from MSW incineration for Shanghai and even greater China.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/prevention & control , China , Incineration/methods , Solid Waste/analysis
16.
J Environ Sci (China) ; 115: 383-391, 2022 May.
Article in English | MEDLINE | ID: mdl-34969466

ABSTRACT

The combination of intercropping and phytoremediation in the remediation of cadmium contaminated soil is an emerging model in recent years, but the results of previous studies are inconsistent. In the field experiment, eggplant was intercropped with hyperaccumulator Sedum alfredii Hance (inoculated or not inoculated with endophytic bacteria) to study the effects of intercropping on vegetable safety production, phytoremediation efficiency of hyperaccumulator and variation of soil available nutrients. The results showed that the intercropping treatment had a negative effect on the growth of eggplant and Sedum, but endophyte SaMR12 alleviated the inhibition of intercropping on plant growth. Intercropping treatment increases the Cd concentration in edible part of eggplant to 1.34 mg/kg compared with eggplant monoculture (1.19 mg/kg). While the application of SaMR12 reduces the Cd concentration of eggplant fruit to 0.95 mg/kg and significantly promotes the Cd uptake by Sedum. What's more surprising is that compared with eggplant monocropping, the content of soil available nitrogen, phosphorus and potassium in the treatment of intercropping with inoculated Sedum increased significantly. And according to the correlation analysis of various indexes of plants and soil, the Cd content of eggplant is negatively correlated with the available phosphorus and potassium in the soil, while the Cd content of Sedum is positively correlated with it, which suggested that the application of phosphorus and potassium fertilizers in this experimental site was beneficial to reduce Cd content in eggplant and improve Cd phytoextraction of Sedum. Therefore, in the daily production of moderately Cd-contaminated soil, intercropping eggplant with Sedum inoculated with endophytic bacteria is an excellent Phytoextraction Coupled with Agro-safe-production (PCA) pattern.


Subject(s)
Sedum , Soil Pollutants , Solanum melongena , Bacteria , Biodegradation, Environmental , Cadmium/analysis , Soil , Soil Pollutants/analysis , Vegetables
17.
Sci Total Environ ; 813: 151865, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34813819

ABSTRACT

Developing of effective photocatalysts is of great significance for realizing photocatalytic environment purification. Herein, an interfacial bent bands and internal electric field modulated CeO2/ZnIn2S4 Z-scheme heterojunction for photocatalytic Hg0 oxidation. It is found that the charge transfer mechanism of Z-scheme was driven by the interfacial bent bands and internal electric field, which was confirmed by electrochemical measurements, electron spin paramagnetic resonance spectroscopy and density functional theory calculations. Moreover, the (110) dominant CeO2 nanorods partially converted Ce4+ to Ce3+ and formed oxygen vacancies, and as an electron mediator in Z-scheme systems to further facilitate charge transfer process and molecular oxygen activation. Under the strong synergistic effect between the large specific surface area, Z-scheme heterojunction and oxygen vacancies, the optimized photocatalyst exhibits 86.7% of photocatalytic removal efficiency. This work provides Z-scheme heterojunction photocatalyst design perspective for photocatalytic air purification.

18.
Environ Pollut ; 293: 118510, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34793909

ABSTRACT

Plant growth regulators (PGRs) assisted phytoextraction was investigated as a viable phytoremediation technology to increase the phytoextraction efficiency in contaminated soils. This study aimed to evaluate the cadimum (Cd)/lead (Pb)/zinc (Zn) phytoextraction efficiency by a hyperaccumulator Sedum alfredii Hance (S. alfredii) treated with 9 PGRs, including indole-3-acetic acid (IAA), gibberellin (GA3), cytokinin (CKs), abscisic acid (ABA), ethylene (ETH), brassinosteroid (BR), salicylic acid (SA), strigolactones (SL) and jasmonic acid (JA), in slightly or heavily contaminated (SC and HC, respectively) soil. Results demonstrated that PGRs were able to improve S. alfredii biomass, the most significant increases were observed in GA3 and SL for HC soil, while for SC soil, IAA and BR exhibited positive effects. The levels of Cd, Pb and Zn in the shoots of S. alfredii treated with ABA and SL were noticeably greater than in the CK treatment in HC soil, while the uptake of metals were increased by IAA and CKs in SC soil. Combined with the results of biomass and metal contents in shoots, we found that ABA showed the highest Cd removal efficiency and the maximum Pb and Zn removal efficiency was observed with GA3, which was 62.99%, 269.23%, and 41.18%, respectively higher than the control in HC soil. Meanwhile, compared to control, the maximum removal efficiency of Cd by IAA treatment (52.80%), Pb by JA treatment (165.1%), and Zn by BR treatment (44.97%) in the SC soil. Overall, our results suggested that these PGRs, especially, ABA, SL, IAA, BR and GA3 had great potential in improving phytoremediation efficiency of S. alfredii grown in contaminated soils.


Subject(s)
Metals, Heavy , Sedum , Soil Pollutants , Biodegradation, Environmental , Cadmium/analysis , Lead , Metals, Heavy/analysis , Plant Growth Regulators , Soil , Soil Pollutants/analysis , Zinc/analysis
19.
Toxics ; 11(1)2022 12 27.
Article in English | MEDLINE | ID: mdl-36668753

ABSTRACT

With the rapid development of industry, chromium (Cr) pollutants accumulate constantly in the soil, causing severe soil Cr pollution problems. Farmland Cr pollution hurts the safety of agricultural production and indirectly affects human health and safety. However, the current situation of Cr pollution in farmland soil and crops has not been detailed enough. In this study, the evaluation of Cr potential risk in soil-crop systems was conducted in a rural area that was affected by industry and historic sewage irrigation. Ten different crops and rhizosphere soils were sampled from four fields. The results showed that Cr contents in farmland soil exceeded the national standard threshold in China (>21.85%), and the Cr content in edible parts of some agricultural products exceeded that too. According to the PCA and relation analysis, the Cr accumulation in edible parts showed a significant correlation with soil Cr contents and available potassium contents. Except for water spinach, the target hazard quotient (THQ) of the other crops was lower than 1.0 but the carcinogenic health risks all exceeded the limits. The carcinogenic risks (CR) of different types of crops are food crops > legume crops > leafy vegetable crops and root-tuber crops. A comprehensive assessment revealed that planting water spinach in this area had the highest potential risk of Cr pollution. This study provided a scientific and reliable approach by integrating soil environmental quality and agricultural product security, which helps evaluate the potential risk of Cr in arable land more efficiently and lays technical guidelines for local agricultural production safety.

20.
Chemosphere ; 285: 131499, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34265715

ABSTRACT

Cadmium (Cd) exposure is related to a multitude of adverse health outcomes because food crops grown on Cd-polluted soil are widely consumed by the public. The present study investigates the different application techniques of a combined amendment (lime + zeolite + biochar + compost, LZBC) for soil Cd immobilization effect on growth performance, Cd uptake by the second season crops, and soil quality in greenhouse vegetable production (GVP) under a rotation system. Five fruit vegetables were cultivated as the second season crop in the same plots which have been used for pakchoi as the first season crop (with or without LZBC application). The results indicated that LZBC with the consecutive application (T3) promoted crops biomass and fruit yield the most, followed by LZBC with the second crop application (T2) and LZBC with the first crop application (T1). LZBC application showed increasing rhizosphere soil pH and improvement in soil fertility of all crops including available nitrogen, available phosphorus, available potassium, organic matter, and cation exchange capacity. LZBC had positive influences on soluble sugar, soluble protein, and vitamin C in edible parts of 5 vegetables. Cd contents in fruit, shoot, and root of eggplant, pimento, cowpea, and tomato except cucumber were reduced by adding LZBC. As for the economic performance, T3 had the highest output/input ratio in general. Overall, these results demonstrated that T3 was dramatically more effective for minimizing health risk, increasing production, and facilitating sustainable utilization of soil under the Cd-contaminated GVP system.


Subject(s)
Cadmium , Soil Pollutants , Adsorption , Cadmium/analysis , Fruit/chemistry , Soil , Soil Pollutants/analysis , Vegetables
SELECTION OF CITATIONS
SEARCH DETAIL
...