Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pathol Res Pract ; 254: 155165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38286053

ABSTRACT

Epileptic seizures are frequently the first symptom in glioma patients. However, the causal relationship between glioma and epilepsy is not yet fully understood, as it cannot be explained solely by tumor mass effect or peritumoral factors. In this study, we retrospectively enrolled 320 patients with grade 2-4 glioma who received treatment between January 2019 and July 2022, and explored the biomarkers of seizure occurrence and seizure outcome prediction using univariate and multivariate logistic regression analyses. Our results showed that IDH1 R132H mutation was an independent risk factor for seizure occurrence in lower-grade glioma (LGG) patients (OR = 4.915, 95%CI = 1.713 - 14.103, P = 0.003). Additionally, IDH1 R132H mutation predicted higher seizure-free ratios in LGG patients with intact ATRX expression (OR = 6.793, 95%CI = 1.217 - 37.923, P = 0.029) one year after diagnosis. Therefore, our findings suggest that IDH1 mutation can predict seizure occurrence and control in LGG patients, providing further insights into the relationship between glioma and epilepsy.


Subject(s)
Brain Neoplasms , Epilepsy , Glioma , Adult , Humans , Brain Neoplasms/complications , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Retrospective Studies , Glioma/complications , Glioma/genetics , Glioma/pathology , Seizures/genetics , Prognosis , Mutation , Epilepsy/complications , Isocitrate Dehydrogenase/genetics
2.
Biomed Pharmacother ; 170: 115983, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134633

ABSTRACT

ARHGEF17 encodes the protein RhoGEF17, which is highly expressed in vascular endothelial cells. It is a guanine nucleotide exchange factor (GEF) that accelerates the exchange of GDP with GTP on many small GTPases through its Dbl homology (DH) domain, enabling the activation of Rho-GTPases such as RhoA, RhoB, and RhoC. Rho GTPase-regulated changes in the actin cytoskeleton and cell adhesion kinetics are the main mechanisms mediating many endothelial cell (EC) alterations, including cell morphology, migration, and division changes, which profoundly affect EC barrier function. This review focuses on ARHGEF17 expression, activation and biological functions in ECs, linking its regulation of cellular morphology, migration, mitosis and other cellular behaviors to disease onset and progression. Understanding ARHGEF17 mechanisms of action will contribute to the design of therapeutic approaches targeting RhoGEF17, a potential drug target for the treatment of various endothelium-related diseases, Such as vascular inflammation, carcinogenesis and transendothelial metastasis of tumors.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/metabolism , rho GTP-Binding Proteins/metabolism , rhoA GTP-Binding Protein/metabolism , Neoplasms/drug therapy , Endothelium
3.
Front Mol Neurosci ; 16: 1148179, 2023.
Article in English | MEDLINE | ID: mdl-37701852

ABSTRACT

Objective: To explore the development context, research hotspots and frontiers in the glymphatic system (GS) field from 2012 to 2022 by bibliometric analysis. Methods: The Web of Science Core Collection (WoSCC) database was searched for articles published between 2012 and 2022. Microsoft Excel was used to manage the data. VOSviewer, CiteSpace, GraphPad Prism, the Web of Science, and an online analysis platform for bibliometrics (http://bibliometric.com/) were used to analyze the countries, institutions, journals, and collaboration networks among authors and the types of articles, developmental directions, references, and top keywords of published articles. Results: A total of 412 articles were retrieved, including 39 countries/regions, 223 research institutes and 171 academic journals. The subject classifications related to the GS were Neuroscience, Clinical Neuroscience and Radiology/Nuclear Medicine/Medical Imaging. The United States has maintained its dominant and most influential position in GS research. Among research institutions and journals, the Univ Rochester and Journal of Cerebral Blood Flow and Metabolism had the highest number of academic articles, respectively. Nedergaard M had the most published article, and Iliff JJ had the most co-citations. The top two keywords with the highest frequency were "glymphatic system" and "cerebrospinal fluid." Conclusion: This research provides valuable information for the study of the GS. The bibliometric analysis of this area will encourage potential collaborations among researchers, defining its frontiers and directions for development.

4.
Front Neurol ; 13: 924080, 2022.
Article in English | MEDLINE | ID: mdl-35847203

ABSTRACT

The early stages of subarachnoid hemorrhage (SAH) are extremely important for the progression and prognosis of this disease. The glymphatic system (GS) has positive implications for the nervous system due to its ability to clearance tau and amyloid-ß (Aß) protein. Previous studies have shown that GS dysfunction will appear after SAH. However, there is no systematic evaluation of the degree of damage and development process of GS function in the early stage after SAH. In this study, we evaluated the GS function and neurobehavioral in the sham, 6 h, 1, 3, and 7 days after SAH, respectively. Our results showed that the function of GS was severely attenuated in mice after SAH with a decreased polarity of Aquaporin-4 (AQP4), increased expression of AQP4, a linear correlation with the dystrophin-associated complex (DAC), the proliferation of reactive astrocytes, increased tau protein accumulation, and decreased neurological function. Collectively, these findings provide a comprehensive understanding of the functional changes of GS after SAH, provide references for subsequent scholars studying SAH, and suggest some potential mechanistic insight that affects AQP4 polarity and GS function.

5.
J Vis Exp ; (184)2022 06 29.
Article in English | MEDLINE | ID: mdl-35848831

ABSTRACT

The amygdala is one of the most common origins of seizures, and the amygdala mouse model is essential for the illustration of epilepsy. However, few studies have described the experimental protocol in detail. This paper illustrates the whole process of amygdala electrical kindling epilepsy model making, with the introduction of a method of bipolar electrode fabrication. This electrode can both stimulate and record, reducing brain injury caused by implanting separate electrodes for stimulation and recording. For long-term electroencephalogram (EEG) recording purposes, slip rings were used to eliminate the record interruption caused by cable tangles and falling off. After periodic stimulation (60 Hz, 1 s every 15 min) of the basolateral amygdala (AP: 1.67 mm, L: 2.7 mm, V: 4.9 mm) for 19.83 ± 5.742 times, full kindling was observed in six mice (defined as induction of three continuous grade V episodes classified by Racine's scale). An intracranial EEG was recorded throughout the entire kindling process, and an epileptic discharge in the amygdala lasting 20-70 s was observed after kindling. Therefore, this is a robust protocol for modeling epilepsy originating from the amygdala, and the method is suitable for revealing the role of the amygdala in temporal lobe epilepsy. This research contributes to future studies on the mechanisms of mesial temporal lobe epilepsy and novel antiepileptogenic drugs.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , Kindling, Neurologic , Amygdala/physiology , Animals , Disease Models, Animal , Electric Stimulation/methods , Electrodes, Implanted , Mice
6.
Neuroscience ; 496: 219-229, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35700816

ABSTRACT

Ubiquitin-specific protease 22 (USP22), a potential marker of cancer stem cells, significantly influences stem cell fate choices. However, its functions in neural stem cells (NSCs) and adult neurogenesis, especially following traumatic brain injury (TBI), remain only partially understood. Here, we found that aberrant USP22 expression could affect NSC proliferation and stemness maintenance, as assessed by the generation of neurospheres, cell counting kit-8 (CCK-8) and immunofluorescence staining in vitro. Moreover, USP22 depletion promotes the differentiation of NSCs, both in vitro and in vivo. In contrast, USP22 overexpression inhibits NSC differentiation into neurons. Interestingly, our data showed that USP22 promotes the proliferation but inhibits the differentiation of NSCs in the dentate gyrus (DG) of the hippocampus soon after TBI. The Morris water maze (MWM) test was adopted to evaluate neurological function, which confirmed that USP22 could improve the learning and memory capacity that was already compromised following TBI. Overall, this study uncovers a potentially novel regulatory role of USP22 in the proliferation and differentiation ability of NSCs, contributing to the hippocampus-dependent cognitive function of TBI mice and may be a novel target for future therapeutic approaches.


Subject(s)
Brain Injuries, Traumatic , Neural Stem Cells , Ubiquitin Thiolesterase/metabolism , Animals , Brain Injuries, Traumatic/metabolism , Cell Proliferation , Cognition/physiology , Hippocampus/metabolism , Maze Learning/physiology , Mice , Neural Stem Cells/metabolism , Neurogenesis/physiology , Ubiquitin-Specific Proteases/metabolism
7.
Neurochem Res ; 47(3): 701-712, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34792752

ABSTRACT

The glymphatic system (GS) plays an important role in subarachnoid hemorrhage (SAH). Nimodipine treatment provides SAH patients with short-term neurological benefits. However, no trials have been conducted to quantify the relationship between nimodipine and GS. We hypothesized that nimodipine could attenuate early brain injury (EBI) after SAH by affecting the function of the GS. In this study, we assessed the effects of nimodipine, a dihydropyridine calcium channel antagonist, on mice 3 days after SAH. The functions of GS were assessed by immunofluorescence and western blot. The effects of nimodipine were assessed behaviorally. Concurrently, correlation analysis was performed for the functions of GS, immunofluorescence and behavioral function. Our results indicated that nimodipine improved GS function and attenuated neurological deficits and brain edema in mice with SAH. Activation of the cAMP/PKA pathway was involved in this process. GS function was closely associated with perivascular AQP4 polarization, cortical GFAP/AQP4 expression, brain edema and neurobehavioral function. In conclusion, this study shows for the first time that nimodipine plays a neuroprotective role in the period of EBI after SAH in mice through the GS.


Subject(s)
Brain Injuries , Glymphatic System , Subarachnoid Hemorrhage , Animals , Brain/metabolism , Brain Injuries/metabolism , Glymphatic System/metabolism , Humans , Mice , Nimodipine/metabolism , Nimodipine/pharmacology , Nimodipine/therapeutic use , Rats , Rats, Sprague-Dawley , Subarachnoid Hemorrhage/metabolism
8.
Brain Res ; 1769: 147584, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34303696

ABSTRACT

BACKGROUND AND PURPOSE: Blood that enters the subarachnoid space (SAS) and its breakdown products are neurotoxic and are the principal inducers of brain injury after subarachnoid hemorrhage (SAH). Recently, meningeal lymphatic vessels (MLVs) have been proven to play an important role in clearing erythrocytes that arise from SAH, as well as other macromolecular solutes. However, evidence demonstrating the relationship between MLVs and brain injury after SAH is still limited. Therefore, we performed this study to observe the effects of meningeal lymphatic impairment on early brain injury (EBI) after experimental SAH. METHODS: The MLVs of C57BL/6 male adult mice were ablated by injecting Visudyne into the cisterna magna and transcranially photoconverting it with laser light. The MLVs were then examined by immunofluorescence staining for lyve-1. Next, both the MLV-ablated group and the control group (normal mice) underwent filament perforation to model SAH or sham operation. We assessed the cortical perfusion of all the mice before SAH induction, 5 min after SAH and 24 h after SAH. In addition, we evaluated neurological function deficits by Garcia scores and measured brain water content at 24 h post SAH. Then, neuroinflammation and neural apoptosis in the mouse brain were also examined. RESULTS: Visudyne and transcranial photoconversion treatment notably ablated mouse MLVs. Five minutes after SAH induction, cortical perfusion was significantly impaired, and after 24 h, this impairment was ameliorated considerably in the control group but ameliorated only slightly or worsened in the MLV-ablated group. Additionally, the MLVablated group presented worse neurological function deficits and more severe brain edema than the control group. More notably, neuroinflammation and neural apoptosis were also observed. CONCLUSION: Ablation of MLVs by Visudyne treatment exacerbated EBI after experimental SAH in mice. The worsening of EBI may have arisen from limited drainage of blood and other breakdown products, which are thought to cause brain edema, neuroinflammation, neuronal apoptosis and other pathological processes.


Subject(s)
Brain Injuries, Traumatic/pathology , Lymphatic Vessels/pathology , Meninges/pathology , Subarachnoid Hemorrhage, Traumatic/pathology , Animals , Apoptosis , Body Water , Brain Chemistry , Cerebral Cortex/blood supply , Cerebrovascular Circulation , Cisterna Magna/pathology , Disease Models, Animal , Encephalitis/pathology , Male , Mice , Mice, Inbred C57BL
9.
Aging (Albany NY) ; 13(9): 12800-12816, 2021 05 02.
Article in English | MEDLINE | ID: mdl-33934089

ABSTRACT

Intracranial aneurysms (IAs) are common cerebrovascular diseases that carry a high mortality rate, and the mechanisms that contribute to IA formation and rupture have not been elucidated. ADAMTS-5 (ADAM Metallopeptidase with Thrombospondin Type 1 Motif 5) is a secreted proteinase involved in matrix degradation and ECM (extracellular matrix) remodeling processes, and we hypothesized that the dysregulation of ADAMTS-5 could play a role in the pathophysiology of IA. Immunofluorescence revealed that the ADAMTS-5 levels were decreased in human and murine IA samples. The administration of recombinant protein ADAMTS-5 significantly reduced the incidence of aneurysm rupture in the experimental model of IA. IA artery tissue was collected and utilized for histology, immunostaining, and specific gene expression analysis. Additionally, the IA arteries in ADAMTS-5-administered mice showed reduced elastic fiber destruction, proteoglycan accumulation, macrophage infiltration, inflammatory response, and apoptosis. To further verify the role of ADAMTS-5 in cerebral vessels, a specific ADAMTS-5 inhibitor was used on another model animal, zebrafish, and intracranial hemorrhage was observed in zebrafish embryos. In conclusion, our findings indicate that ADAMTS-5 is downregulated in human IA, and compensatory ADAMTS-5 administration inhibits IA development and rupture with potentially important implications for treating this cerebrovascular disease.


Subject(s)
ADAMTS5 Protein/metabolism , Extracellular Matrix/pathology , Intracranial Aneurysm/complications , ADAMTS5 Protein/administration & dosage , ADAMTS5 Protein/genetics , Adult , Aged , Animals , Disease Models, Animal , Embryo, Nonmammalian , Female , Humans , Injections, Intraperitoneal , Intracranial Aneurysm/drug therapy , Intracranial Aneurysm/pathology , Intracranial Aneurysm/surgery , Male , Mice , Proteolysis , Recombinant Proteins/administration & dosage , Rupture, Spontaneous/etiology , Rupture, Spontaneous/pathology , Rupture, Spontaneous/prevention & control , Vascular Remodeling , Zebrafish , Zebrafish Proteins/antagonists & inhibitors , Zebrafish Proteins/metabolism
10.
J Med Virol ; 93(5): 2938-2946, 2021 05.
Article in English | MEDLINE | ID: mdl-33470428

ABSTRACT

Evidence in the literature suggests that air pollution exposure affects outcomes of patients with COVID-19. However, the extent of this effect requires further investigation. This study was designed to investigate the relationship between long-term exposure to air pollution and the case fatality rate (CFR) of patients with COVID-19. The data on air quality index (AQI), PM2.5, PM10, SO2 , NO2 , and O3 from 14 major cities in China in the past 5 years (2015-2020) were collected, and the CRF of COVID-19 patients in these cities was calculated. First, we investigated the correlation between CFR and long-term air quality indicators. Second, we examined the air pollutants affecting CFR and evaluated their predictive values. We found a positive correlation between the CFR and AQI (1, 3, and 5 years), PM2.5 (1, 3, and 5 years), and PM10 (1, 3, and 5 years). Further analysis indicated the more significant correlation for both AQI (3 and 5 years) and PM2.5 (1, 3, and 5 years) with CFR, and moderate predictive values for air pollution indicators such as AQI (1, 3, and 5 years) and PM2.5 (1, 3, and 5 years) for CFR. Our results indicate that long-term exposure to severe air pollution is associated with higher CFR of COVID-19 patients. Air pollutants such as PM2.5 may assist with the prediction of CFR for COVID-19 patients.


Subject(s)
Air Pollution/adverse effects , COVID-19/mortality , Inhalation Exposure/adverse effects , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/statistics & numerical data , China/epidemiology , Cities/statistics & numerical data , Humans , Inhalation Exposure/analysis , Mortality , Predictive Value of Tests , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...