Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2113-2122, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37681375

ABSTRACT

To explore the adaptive mechanism of leaf photosynthetic capacity in different light environments within Cinnamomum camphora canopy and enhance carbon sequestration, we investigated morphological structures, nutritional and physiological traits and photosynthetic characteristics of leaves in different orientations of C. camphora canopy, southern side in the outer layer (100% full light), southern side in the inner layer (34% full light) and northern side (21% full light). We analyzed the main limitation resulting in down-regulation of photosynthetic capacity in low light environments. Results showed that specific leaf weight, the thickness of lower and upper epidermal cuticle, lower epidermis, palisade tissue as well as cell number and width of palisade tissue, the thickness ratio of palisade to spongy tissue, cell structure closely degree significantly decreased with decreasing light intensity within canopy, opposite to the responses of spongy tissue thickness, cell length-width ratio of palisade tissue, and cell structure loose degree. The contents of leaf carbon, soluble protein, soluble sugar and starch were significantly lower in two low light environments compared with full light, whereas nitrogen content was markedly higher in north side. Low light prominently reduced gas exchange parameters, i.e., net photosynthetic rate (Pn), dark respiration rate, stomatal conductance to CO2(gsc), mesophyll conductance to CO2(gm), total conductance to CO2(gtot), intercellular CO2 concentration (Ci), CO2 concentration at the chloroplast (Cc). Pn was positively correlated with gsc, gm, gtot and Cc. There were no differences in maximum quantum photochemical efficiency, actual quantum photochemical efficiency, photochemical quenching coefficient, maximum rate of Rubisco carboxylation (Vc max) and maximum rate of electron transport (Jmax) among light environments. Vc max and Jmax were positively correlated to Pn. Of the shading-induced limitations to photosynthesis, gm limitation was the most important, and gsc limitation was enhanced with further weakened light intensity while biochemical limitation was rather limited. In summary, the results suggested that full light could improve leaf photosynthetic potential in C. camphora canopy leaves, reduce the effects of gm and gsc limitation on photosynthesis, and consequently enhance carbon assimilation capacity.


Subject(s)
Cinnamomum camphora , Carbon Dioxide , Photosynthesis , Light , Carbon
2.
Huan Jing Ke Xue ; 39(8): 3845-3853, 2018 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29998694

ABSTRACT

To identify plants with potential application in phytoremediation, the concentration of cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb), and zinc (Zn) in soil and 14 dominant plants sampled from a lead-zinc mining area in Nanjing City was measured. Furthermore, the heavy metal contamination of soil, and bioaccumulation and translocation of the 6 heavy metals by the 14 plants were evaluated. The results showed that the principal contaminants were Cd, Mn, Zn, and Pb, and their single factor pollution index was 45.71, 11.68, 10.40, and 4.46, respectively. Furthermore, the Nemerow index of this area was 33.45, which indicated that the mining area was severely polluted. All the 14 dominant plant species were metal-tolerant, although the concentration of metal varied between different spices. Among them, Pteris multifida and Trachelospermum jasminoides significantly accumulated the heavy metals. The concentration of Zn in all the dominant plants was beyond the normal range; however, the bio-concentration factor (BCF) of only Digitaria sanguinalis for Zn was>1, while the BCF of the remaining species for the 6 heavy metals was<1. Furthermore, the heavy metal bio-transfer factor (BTF) of the 14 species was generally high. The BTF of Helianthus tuberosus and Dendranthema indicum for the 6 heavy metals was>1. According to the mechanism of heavy metal accumulation, the 14 plant species were classified into 3 types:accumulators (H. tuberosus, D. indicum, Phytolacca americana, Justicia procumbens, D. sanguinalis, Sonchus brachyotus, Solanum nigrum, and Setaria viridis), root compartment (P. multifida and T. jasminoides), and excluders (Solidago decurrens, Duchesnea indica, Carex breviculmis, and Cyrtomium fortunei).


Subject(s)
Apocynaceae/metabolism , Lead/analysis , Mining , Pteris/metabolism , Soil Pollutants/analysis , China , Environmental Monitoring , Metals, Heavy , Soil , Zinc
SELECTION OF CITATIONS
SEARCH DETAIL
...