Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(11): 3028-30, 2012 Nov.
Article in Chinese | MEDLINE | ID: mdl-23387172

ABSTRACT

Pure, TiO2-doped and TiO2/Ag-doped WO3 films were prepared by evaporation and electron beam evaporating. Raman spectroscopy and chronoamperometry were used to characterize the electrochromic properties of the samples. The correlation between the relative intensity of the Raman peaks, corresponding to the Raman sharp peak of the crystalline phase at 810 cm(-1) is negative, that is to say the higher the relative intensity of the Raman peaks, the smaller the coloration efficiency.

2.
Article in Chinese | MEDLINE | ID: mdl-20137301

ABSTRACT

OBJECTIVE: To investigate the effects of sinusoidal magnetic field on isolated sarcoplasmic reticulum (SR) calcium release channel (RyR1) function. METHODS: With the Ca2+ dynamic spectrum and isotope labeled methods, the Ca2+ release and [(3)H]-Ryanodine binding, the initial rates of NADH oxidation and the production of superoxide of SR exposed to 50 Hz sinusoidal magnetic field (MF) were investigated respectively. RESULTS: 0.4 mT, 50 Hz sinusoidal MF exposure for 30 min increased SR Ca2+ release initial rate about 35% from (10.82 +/- 0.89) pmol.mg(-1) pro.s(-1) to (14.69 +/- 1.21) pmol.mg(-1) pro.s(-1); and the [(3)H]-Ryanodine binding by about 15% from (2.13 +/- 0.05) pmol/mg pro to (2.45 +/- 0.07) pmol/mg pro, which regulated by 1 mmol/L NADH with 1 mmol/L NAD+. Meanwhile MF upregulated the rate of NADH oxidation by about 22% from (0.88 +/- 0.11) x 10(-4) FI/s to (1.07 +/- 0.13) x 10(-4) FI/s and upregulated the production of superoxide by about 32% from (0.99 +/- 0.09) x 10(-5) FI/s to (1.31 +/- 0.06) x 10(-5) FI/s. CONCLUSION: 0.4 mT sinusoidal MF increases the activity of RyR1 within the low redox potential environment, and promotes NADH oxidase activity and superoxide production.


Subject(s)
Calcium/metabolism , Magnetic Fields/adverse effects , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism , Animals , Rabbits , Sarcoplasmic Reticulum/radiation effects
3.
Zhonghua Yu Fang Yi Xue Za Zhi ; 40(3): 168-72, 2006 May.
Article in Chinese | MEDLINE | ID: mdl-16836880

ABSTRACT

OBJECTIVE: To investigate the effects of power frequency magnetic field on the Ca2+ transport dynamics of isolated sarcoplasmic reticulum vesicles. METHODS: The assays of Ca2+ uptake time course and the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles were investigated by using dynamic mode of spectrometry with a Ca2+ dye; Ca2+ release channel activation was examined by 3H-ryanodine binding and Ca2+ release assays; membrane fluidity of sarcoplasmic reticulum vesicles was examined by fluorescence polarization, without or with exposure to the vesicles at a 0.4 mT, 50 Hz sinusoidal magnetic field. RESULTS: 0.4 mT, 50 Hz sinusoidal magnetic field exposure caused about a 16% decline of the initial Ca2+ uptake rate from a (29.18 +/- 3.90) pmol.mg(-1).s(-1) to a (24.60 +/- 3.81) pmol.mg(-1).s(-1) and a 26% decline of the Ca2+-ATPase activity from (0.93 +/- 0.05) micromol.mg(-1).min(-1) to (0.69 +/- 0.07) micromol.mg(-1).min(-1) of sarcoplasmic reticulum vesicles, whereas caused a 15% increase of the initial Ca2+ release rate from (4.83 +/- 0.82) pmol.mg(-1).s(-1) to (5.65 +/- 0.43) pmol.mg(-1).s(-1) and a 5% increase in 3H-ryanodine binding to the receptor from (1.10 +/- 0.12) pmol/mg to (1.16 +/- 0.13) pmol/mg, respectively. CONCLUSION: The decline of Ca2+-ATPase activity and the increase of Ca2+ release channel activity should result in a down-regulation of Ca2+ dynamic uptake and an up-regulation of Ca2+ release induced by exposing the sarcoplasmic reticulum to a 0.4 mT, 50 Hz power frequency magnetic field.


Subject(s)
Calcium/metabolism , Electromagnetic Fields , Sarcoplasmic Reticulum/metabolism , Sarcoplasmic Reticulum/radiation effects , Animals , Calcium Signaling , Muscle, Skeletal/metabolism , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...