Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(19)2022 Oct 09.
Article in English | MEDLINE | ID: mdl-36234655

ABSTRACT

The ion-enrichment inside carbon nanotubes (CNTs) offers the possibility of applications in water purification, ion batteries, memory devices, supercapacitors, field emission and functional hybrid nanostructures. However, the low filling capacity of CNTs in salt solutions due to end caps and blockages remains a barrier to the practical use of such applications. In this study, we fabricated ultra-short CNTs that were free from end caps and blockages using ball milling and acid pickling. We then compared their ion-enrichment capacity with that of long CNTs. The results showed that the ion-enrichment capacity of ultra-short CNTs was much higher than that of long CNTs. Furthermore, a broad range of ions could be enriched in the ultra-short CNTs including alkali-metal ions (e.g., K+), alkaline-earth-metal ions (e.g., Ca2+) and heavy-metal ions (e.g., Pb2+). The ultra-short CNTs were much more unobstructed than the raw long CNTs, which was due to the increased orifice number per unit mass of CNTs and the decreased difficulty in removing the blockages in the middle section inside the CNTs. Under the hydrated-cation-π interactions, the ultra-short CNTs with few end caps and blockages could highly efficiently enrich ions.

2.
Chem Commun (Camb) ; 58(21): 3469-3472, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35195655

ABSTRACT

Efficient immobilization of actinide wastes is challenging in the nuclear energy industry. Here, we reported that 100% substitution of Zr4+ by U6+ in a La2Zr2O7 matrix has been achieved for the first time by the molten salt (MS) method. Importantly, we observed that uranium can be precisely anchored into Zr or La sites of the La2Zr2O7 matrix, as confirmed by X-ray diffraction, Raman, and X-ray absorption spectra. This work will guide the construction of site-controlled and high-capacity actinide-immobilized pyrochlore materials and could be extended to other perovskite materials.

3.
J Synchrotron Radiat ; 29(Pt 1): 37-44, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34985421

ABSTRACT

As potential nuclear waste host matrices, two series of uranium-doped Nd2Zr2O7 nanoparticles were successfully synthesized using an optimized molten salt method in an air atmosphere. Our combined X-ray diffraction, Raman and X-ray absorption fine-structure (XAFS) spectroscopy studies reveal that uranium ions can precisely substitute the Nd site to form an Nd2-xUxZr2O7+δ (0 ≤ x ≤ 0.2) system and the Zr site to form an Nd2Zr2-yUyO7+δ (0 ≤ y ≤ 0.4) system without any impurity phase. With increasing U concentration, there is a phase transition from pyrochlore (Fd3m) to defect fluorite (Fm3m) structures in both series of U-doped Nd2Zr2O7. The XAFS analysis indicates that uranium exists in the form of high-valent U6+ in all samples. To balance the extra charge for substituting Nd3+ or Zr4+ by U6+, additional oxygen is introduced accompanied by a large structural distortion; however, the Nd2Zr1.6U0.4O7+δ sample with high U loading (20 mol%) still maintains a regular fluorite structure, indicating the good solubility of the Nd2Zr2O7 host for uranium. This study is, to the best of our knowledge, the first systematic study on U-incorporated Nd2Zr2O7 synthesized via the molten salt method and provides convincing evidence for the feasibility of accurately immobilizing U at specific sites.

4.
Phys Rev Lett ; 121(22): 226102, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547604

ABSTRACT

We experimentally demonstrate the formation of salt aggregations with unexpectedly high concentration inside multiwalled carbon nanotubes (CNTs) soaked only in dilute salt solution sand even in solutions containing only traces of salts. This finding suggests the blocking of fluid across CNTs by the salt aggregations when CNTs are soaked in a dilute salt solution with the concentration of seawater or even lower, which may open new avenues for the development of novel CNT-based desalination techniques. The high salt accumulation of CNTs also provides a new CNT-based strategy for the collection or extraction of noble metal salts in solutions containing traces of noble metal salts. Theoretical analyses reveal that this high salt accumulation inside CNTs can be mainly attributed to the strong hydrated cation-π interactions of hydrated cations and π electrons in the aromatic rings of CNTs.

5.
Nanoscale ; 10(37): 18055-18063, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30229788

ABSTRACT

Autophagy represents an important cellular response to nanoparticles (NPs), whose modulation holds great promise for developing nanomedicine. Here, we systematically studied cell autophagy responses elicited by the NP-protein corona with diverse protein corona types surrounding NPs with different sizes, shapes, and compositions. We demonstrated that these physicochemical properties of NP-protein coronas exerted a remarkable influence on cell autophagy responses. Particularly, for surface protein type-associated modulation of cell autophagy, we correlated the autophagy level to adsorbed protein type on Fe3O4 NPs. Accordingly, we could modulate cell autophagy in response to various levels of protein adsorption. Our work provides new clues to modulate cell autophagy by rational designing NP-protein complexes, which could aid in further biological and therapeutic applications.


Subject(s)
Autophagy , Blood Proteins , Nanoparticles , Protein Corona , Ferrous Compounds , HeLa Cells , Humans , Nanomedicine
6.
Sci Rep ; 8(1): 8158, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29802337

ABSTRACT

GH3535 alloy is one of the most promising structural materials for molten salt reactors (MSRs). Its microstructure is characterized by equiaxed grains and coarser primary M6C carbide strings. In this study, stable nano-sized M2C carbides were obtained in GH3535 alloy by the removal of Si and thermal exposure at 650 °C. Nano-sized M2C carbide particles precipitate preferentially at grain boundaries during the initial stage of thermal exposure and then spread all over the grain interior in two forms, namely, arrays along the {1 1 1} planes and randomly distributed particles. The precipitate-free zones (PFZs) and the precipitate-enriched zones (PEZs) of the M2C carbides were found to coexist in the vicinity of the grain boundaries. All M2C carbides possess one certain orientation relationship (OR) with the matrix. Based on microstructural characterizations, the formation process of M2C carbides with different morphologies was discussed. The results suggested that the more-stable morphology and OR of M2C carbides in the Si-free alloy provide higher hardness and better post-irradiation properties, as reported previously. Our results indicate the preferential application of Si-free GH3535 alloy for the low-temperature components in MSRs.

7.
Materials (Basel) ; 9(10)2016 Oct 14.
Article in English | MEDLINE | ID: mdl-28773952

ABSTRACT

This work reports on the evolution law of helium bubbles in Hastelloy N alloy on post-irradiation annealing conditions. After helium ion irradiation at room temperature and subsequent annealing at 600 °C (1 h), the transmission electron microscopy (TEM) micrograph indicates the presence of helium bubbles with size of 2 nm in the depth range of 0-300 nm. As for the sample further annealed at 850 °C (5 h), on one hand, a "Denuded Zone" (0-38 nm) with rare helium bubbles forms due to the decreased helium concentration. On the other hand, the "Ripening Zone" (38-108 nm) and "Coalescence Zone" (108-350 nm) with huge differences in size and separation of helium bubbles, caused by different coarsening rates, are observed. The mechanisms of "Ostwald ripening" and "migration and coalescence", experimentally proved in this work, may explain these observations.

8.
Microsc Res Tech ; 77(2): 161-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24285574

ABSTRACT

Hastelloy N alloy has been selected as the primary structure material for molten salt reactor. In this article, Hastelloy N alloy samples were irradiated to different doses at room temperature using 300 keV Ar(+) ions. The microstructural evolution was investigated by transmission electron microscopy (TEM) and energy-dispersive spectroscopy (EDS). Black dot defects emerged in sample irradiated at low dose (0.4 displacement per atom (dpa)), and they grew up with irradiation doses (0.4-2 dpa). A high density of small dislocation loops (nano meters in size) were observed in the sample irradiated to 4 dpa. When the ion dose increased to 12 dpa, complicated structures with defects (including dislocation lines, larger loops and smaller black dots) were observed. Dislocation networks were detected from high-angle annular dark field (HAADF) images. Larger dislocation loops (size: 30-80 nm) were visible in the sample irradiated to 40 dpa. Irradiation with dose of 120 dpa led to the formation of face-centered cubic nanocrystallites with preferred orientations.

SELECTION OF CITATIONS
SEARCH DETAIL
...