Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 220: 659-670, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35995180

ABSTRACT

Increasing evidence indicates that type 2 diabetes mellitus (T2DM) is closely related to intestinal bacteria disorders and abnormal hepatic metabolism. Morchella importuna polysaccharide (MIP) shows excellent hypoglycemic activity in vitro. However, the hypoglycemic effect and mechanism of MIP in vivo have yet to be investigated. In this study, the blood glucose, blood lipid and insulin resistance of diabetic mice after MIP intervention were measured to evaluate its hypoglycemic effect. Then, the microbiome and metabolomics were combined to explore the hypoglycemic mechanism of MIP. Results indicated that high dose MIP (400 mg/kg) had significant hypoglycemic effect. Furthermore, MIP could reverse diabetes-induced intestinal disorder by increasing the abundance of Akkermansia, Blautia, Dubosiella, and Lachnospiraceae, as well as decreasing the abundance of Helicobacteraceae. Besides, the hepatic metabolites and complex network systems formed by multiple metabolic pathways were regulated after MIP treatment. Notably, a new biomarker of diabetes (N-P-coumaroyl spermidine) was discovered in this study. Moreover, the significant association between intestinal bacteria and hepatic metabolites was determined by correlations analysis, which in turn confirmed MIP alleviated T2DM via the gut-liver axis. Therefore, these findings elucidated in-depth hypoglycemic mechanisms of MIP and provided a new biomarker for the prevention of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Ascomycota , Biomarkers , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Dietary Carbohydrates/therapeutic use , Hypoglycemic Agents/therapeutic use , Metabolomics , Mice , Polysaccharides/therapeutic use , RNA, Ribosomal, 16S/genetics , Spermidine/analogs & derivatives
2.
Front Nutr ; 9: 912014, 2022.
Article in English | MEDLINE | ID: mdl-35757264

ABSTRACT

In this study, a high-efficiency and non-pollution extraction procedure, ultrasound-assisted technique with deep eutectic solvents (DESs), was applied for extraction of polysaccharides from Morchella importuna (MIP-D). The results exhibited that the system of DES was: mole ratio between choline chloride and oxalic acid of 2:1, water content of 90% (v/v), and the optimal extraction parameters were as follows: extraction time of 31.2 min, extraction temperature of 62.1°C, and the liquid-solid ratio of 32.5:1 (v/w). Under these extraction parameters, the extraction yield of MIP-D was 4.5 times higher than hot water extraction (HWE) method and had higher carbohydrate (85.27%) and sulfate contents (34.16%). Moreover, high-performance liquid chromatography (HPLC) and Fourier-transform IR (FTIR) spectrum analysis indicated that MIP-D was comprised of glucosamine, galactose, glucose, and mannose, with molar ratios of 0.39:1.88:3.82:3.91, which contained the pyranose ring skeleton. High-performance gel permeation chromatography (HPGPC) analysis revealed that MIP-D showed three fractions with molecular weights of 2.6 × 106, 7.3 × 104, and 3.7 × 103 Da, which were lower than those of polysaccharides extracted by HWE. In-vitro tests proved that MIP-D possessed excellent antioxidant and inhibited α-amylase and α-glucosidase inhibitory activities. Therefore, DESs (choline chloride-oxalic acid) as a high-efficiency and non-pollution solvent alternative can be applied to the separation of bioactive polysaccharides from Morchella importuna (M. importuna).

3.
Int J Biol Macromol ; 208: 343-355, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35337916

ABSTRACT

The present study aimed to evaluate the effects of in vitro simulated saliva-gastrointestinal digestion and fecal fermentation behavior on the chemical composition, structure and bioactivity of polysaccharides from Clitocybe squamulosa (CSFP). Results showed that gastric digestion significantly changed the chemical composition and structural properties of CSFP, such as total uronic acid, reducing sugar, molecular weight, rheological properties, particle size, and microscopic morphology. In particular, the molecular weight decreased from 19,480 Da to 10,945 Da, while the reducing-sugar content increased from 0.149 mg/mL to 0.293 mg/mL. Gastric digestion also affected the biological activity of CSFP. Although after gastric digestion, CSFP retained its vigorous antioxidant activity, ability to inhibit α-amylase activity, and the binding ability to bile acid, fat, and free cholesterol in vitro. However, there was an apparent weakening trend. After in vitro fermentation of gut microbiota, the content of total sugar was significantly decreased from 11.6 mg/mL to 2.4 mg/mL, and the pH value in the fecal culture significantly decreased to 5.20, indicating that CSFP could be broken down and utilized by gut microbiota. Compared to the blank, the concentrations of total short-chain fatty acids (SCFAs) including acetic, propionic and n-butyric significantly increased. Simultaneously, CSFP could remarkably reduce the proportions of Firmicutes and Bacteroides (F/B) and promote the growth of some beneficial intestinal microbiota. Therefore, CSFP can potentially be a new functional food as prebiotics to promote human gut health.


Subject(s)
Digestion , Microbiota , Fatty Acids, Volatile/metabolism , Feces , Fermentation , Humans , Polysaccharides/metabolism , Polysaccharides/pharmacology , Sugars/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...