Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Chim Acta ; 564: 119906, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-39127296

ABSTRACT

Mycoplasma pneumoniae can cause respiratory infections and pneumonia, posing a serious threat to the health of children and adolescents. Early diagnosis of Mycoplasma pneumoniae infection is crucial for clinical treatment. Currently, diagnostic methods for Mycoplasma pneumoniae infection include pathogen detection, molecular biology techniques, and bacterial culture, all of which have certain limitations. Here, we developed a rapid, simple, and accurate detection method for Mycoplasma pneumoniae that does not rely on large equipment or complex operations. This technology combines the CRISPR-Cas12a system with recombinase polymerase amplification (RPA), allowing the detection results to be observed through fluorescence curves and immunochromatographic lateral flow strips.It has been validated that RPA-CRISPR/Cas12a fluorescence analysis and RPA-CRISPR/Cas12-immunochromatographic exhibit no cross-reactivity with other common pathogens, and The established detection limit was ascertained to be as low as 102 copies/µL.Additionally, 49 clinical samples were tested and compared with fluorescence quantitative polymerase chain reaction, demonstrating a sensitivity and specificity of 100%. This platform exhibits promising clinical performance and holds significant potential for clinical application, particularly in settings with limited resources, such as clinical care points or resource-constrained areas.


Subject(s)
CRISPR-Cas Systems , Mycoplasma pneumoniae , Mycoplasma pneumoniae/genetics , Mycoplasma pneumoniae/isolation & purification , Humans , CRISPR-Cas Systems/genetics , Nucleic Acid Amplification Techniques/methods , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/microbiology
2.
Pol J Microbiol ; 73(3): 383-394, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39268952

ABSTRACT

The global proliferation of carbapenemase-producing bacteria (CPB) has garnered significant attention worldwide. Early diagnosis of CPB and accurate identification of carbapenemases are crucial for preventing the spread of CPB and ensuring targeted antibiotic therapy. Therefore, efficient and accurate identification of carbapenemases is paramount in clinically treating diseases associated with CPB. In this study, 58 CPB strains were collected and detected using the DNA endonuclease-targeted CRISPR trans reporter (DETECTR) method, a rapid detection platform based on CRISPR-Cas12a gene editing and isothermal amplification. Additionally, four conventional methods (the APB/EDTA method, PCR, NG-test Carba 5, and GeneXpert Carba-R) were employed and compared against whole genome sequencing (WGS) results, considered the gold standard, to evaluate their efficacy in detecting carbapenemases. Detection by the APB/EDTA method revealed that 29 strains were positive for Class A serine endopeptidases, while 29 strains were positive for Class B metalloenzymes. The classification of these zymotypes was consistent with the sequencing result. All target carbapenemases for KPC were identified with 100% sensitivity using NG-test Carba 5, PCR, DETECTR, and GeneXpert Carba-R. In the case of NDM, both Xpert Carba-R and DETECTR showed a sensitivity of 100%. In contrast, NG-test Carba 5 and PCR had a slightly lower sensitivity of 96.7%, each missing one target carbapenemase. n this study, the APB/EDTA method is capable of identifying the zymotype classification but not the specific resistant genes, while Xpert Carba-R and DETECTR are able to detect all target carbapenemases.


Subject(s)
Bacterial Proteins , beta-Lactamases , beta-Lactamases/genetics , beta-Lactamases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Humans , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity , Polymerase Chain Reaction/methods , Whole Genome Sequencing , CRISPR-Cas Systems
3.
J Microbiol Methods ; 225: 107026, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39182694

ABSTRACT

PURPOSE: The opportunistic pathogens causing Cryptococcal meningitis are Cryptococcus neoformans and Cryptococcus gattii species complexes. At present, clinical detection methods for this condition include culture, ink staining, and cryptococcal antigen detection. In addition, enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and real-time quantitative PCR (qPCR) can be applied for the detection of Cryptococcus. Nevertheless, these methods cannot achieve point-of-care detection (POCT); thus, there is a pressing need to establish a fast, sensitive, and effective detection method. METHODS: Recombinase polymerase amplification (RPA) and clustered regularly spaced short palindromic repeat (CRISPR) techniques are effective tools for achieving rapid POCT. In this study, RPA was combined with CRISPR-Cas12a to establish a fast, sensitive, and specific detection method for cryptococcal meningitis. RESULTS: This study included RPA-Cas12a fluorescence detection and RPA-Cas12a immunochromatographic detection, which can be performed within 50 min. Moreover, the detection limit was as low as 102 copies/µL. Interestingly, the developed method demonstrated satisfactory specificity and no cross-reactivity with other fungi and bacteria. 36 clinical samples were tested, and the consistency between the test results and those obtained using the commonly used clinical culture method was 100 %. CONCLUSION: In this study, a rapid detection method for Cryptococcus neoformans and Cryptococcus gattii species complexes was developed based on CRISPR-Cas12a technology, characterized by its high sensitivity and specificity, ease of use, and cost-effectiveness, making it suitable for on-site detection.


Subject(s)
CRISPR-Cas Systems , Cryptococcus gattii , Cryptococcus neoformans , Sensitivity and Specificity , Cryptococcus gattii/genetics , Cryptococcus gattii/isolation & purification , Cryptococcus neoformans/genetics , Cryptococcus neoformans/isolation & purification , Humans , Meningitis, Cryptococcal/diagnosis , Meningitis, Cryptococcal/microbiology , Clustered Regularly Interspaced Short Palindromic Repeats , Bacterial Proteins , Endodeoxyribonucleases , CRISPR-Associated Proteins
4.
World J Microbiol Biotechnol ; 40(8): 233, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842631

ABSTRACT

Tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) is increasing and has emerged as a global public health issue. However, the mechanism of tigecycline resistance remains unclear. The objective of this study was to investigate the potential role of efflux pump system in tigecycline resistance. 29 tigecycline-non-susceptible Klebsiella pneumoniae (TNSKP) strains were collected and their minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The ramR, acrR, rpsJ, tet(A), and tet(X) were amplified by polymerase chain reaction (PCR). The mRNA expression of different efflux pump genes and regulator genes were analyzed by real-time PCR. Additionally, KP14 was selected for genome sequencing. KP14 genes without acrB, oqxB, and TetA were modified using suicide plasmids and MIC of tigecycline of KP14 with target genes knocked out was investigated. It was found that MIC of tigecycline of 20 out of the 29 TNSKP strains decreased by over four folds once combined with phenyl-arginine-ß-naphthylamide dihydrochloride (PaßN). Most strains exhibited upregulation of AcrAB and oqxAB efflux pumps. The strains with acrB, oqxB, and tetA genes knocked out were constructed, wherein the MIC of tigecycline of KP14∆acrB and KP14∆tetA was observed to be 2 µg/mL (decreased by 16 folds), the MIC of tigecycline of KP14ΔacrBΔTetA was 0.25 µg/mL (decreased by 128 folds), but the MIC of tigecycline of KP14∆oqxB remained unchanged at 32 µg/mL. The majority of TNSKP strains demonstrated increased expression of AcrAB-TolC and oqxAB, while certain strains showed mutations in other genes associated with tigecycline resistance. In KP14, both overexpression of AcrAB-TolC and tet(A) gene mutation contributed to the mechanism of tigecycline resistance.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Klebsiella pneumoniae , Microbial Sensitivity Tests , Mutation , Tigecycline , Tigecycline/pharmacology , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Drug Resistance, Bacterial/genetics , Humans , Antiporters
5.
World J Microbiol Biotechnol ; 40(4): 116, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38418617

ABSTRACT

In this study, we devised a diagnostic platform harnessing a combination of recombinase polymerase amplification (RPA) and the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a system. Notably, this platform obviates the need for intricate equipment and finds utility in diverse settings. Two result display methods were incorporated in this investigation: the RPA-Cas12a-fluorescence method and the RPA-Cas12a-LFS (lateral flow strip). Upon validation, both display platforms exhibited no instances of cross-reactivity, with seven additional types of fungal pathogens responsible for respiratory infections. The established detection limit was ascertained to be as low as 102 copies/µL. In comparison to fluorescence quantitative PCR, the platform demonstrated a sensitivity of 96.7%, a specificity of 100%, and a consistency rate of 98.0%.This platform provides expeditious, precise, and on-site detection capabilities, thereby rendering it a pivotal diagnostic instrument amenable for deployment in primary healthcare facilities and point-of-care settings.


Subject(s)
Pneumonia , Recombinases , Aspergillus fumigatus/genetics , CRISPR-Cas Systems , Staining and Labeling
6.
J Med Virol ; 95(9): e29090, 2023 09.
Article in English | MEDLINE | ID: mdl-37695079

ABSTRACT

The widespread dissemination of coronavirus 2019 imposes a significant burden on society. Therefore, rapid detection facilitates the reduction of transmission risk. In this study, we proposed a multiplex diagnostic platform for the rapid, ultrasensitive, visual, and simultaneous detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) open reading frame 1ab (ORF1ab) and N genes. A visual diagnostic method was developed using a clustered regularly interspaced short palindromic repeat (CRISPR)-Cas12a/Cas13a dual-enzyme digestion system integrated with multiplex reverse transcriptase-recombinase polymerase amplification (RT-RPA). Two CRISPR-Cas proteins (Cas12a and Cas13a) were introduced into the system to recognize and cleave the N gene and ORF1ab gene, respectively. We used fluorescent or CRISPR double digestion test strips to detect the digested products, with the N gene corresponding to the FAM channel in the PCR instrument or the T1 line on the test strip, and the ORF1ab gene corresponding to the ROX channel in the PCR instrument or the T2 line on the test strip. The analysis can be completed in less than 20 min. Meanwhile, we assessed the application of the platform and determined a sensitivity of up to 200 copies/mL. Additionally, dual gene validation in 105 clinical nasopharyngeal swab samples showed a 100% positive predictive value agreement and a 95.7% negative predictive value agreement between our method and quantitative reverse transcription-polymerase chain reaction. Overall, our method offered a novel insight into the rapid diagnosis of SARS-CoV-2.


Subject(s)
Bacterial Proteins , COVID-19 , CRISPR-Associated Proteins , Coronavirus Nucleocapsid Proteins , Endodeoxyribonucleases , Phosphoproteins , Polyproteins , SARS-CoV-2 , Viral Proteins , RNA Cleavage , DNA Cleavage , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19/diagnosis , Viral Proteins/genetics , Polyproteins/genetics , CRISPR-Associated Proteins/chemistry , Bacterial Proteins/chemistry , Endodeoxyribonucleases/chemistry , Coronavirus Nucleocapsid Proteins/genetics , Phosphoproteins/genetics , Humans
7.
J Med Virol ; 95(7): e28905, 2023 07.
Article in English | MEDLINE | ID: mdl-37386903

ABSTRACT

The recent major worldwide outbreak of monkeypox virus (MPXV) has highlighted the urgent need for accurate MPXV detection methods. Although quantitative PCR (qPCR) technique is currently the gold standard for MPXV diagnosis, the high costs associated with the technique and the need for complex instrumentation, limits its application in resource-poor settings. CRISPR technology has developed rapidly in recent years and provides an effective tool for point-of-care testing pathogen identification. Here, we exploited the cleavage properties of the Cas12a enzyme and Cas13a enzyme, to detect the MPXV specific genes, F3L gene and B6R gene, respectively. We developed two detection protocols: a 2-step method in which the CRISPR Dual System reaction and the multiplex recombinase polymerase amplification reaction were carried out in separate tubes and a single-tube method in which both reactions were carried out in one tube. Evaluation of the two methods showed that our protocol can detect the MPXV genome down to 10° copies/µL with good specificity and no cross-reactivity with other poxviruses pseudoviruses, and bacteria. Mock positive samples were used to assess clinical applicability, with the results showing satisfactory concordance with the qPCR method for parallel testing. In conclusion, our study provides a reliable molecular diagnostic strategy for detection of MPXV.


Subject(s)
Disease Outbreaks , Monkeypox virus , Humans , Monkeypox virus/genetics , Cross Reactions , Technology , DNA
SELECTION OF CITATIONS
SEARCH DETAIL