Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-30019761

ABSTRACT

PURPOSE: Improvement of both the imaging resolution and the contrast-to-tissue ratio (CTR) is a current emphasis of contrast-enhanced ultrasound (CEUS) for microvascular perfusion imaging. Based on the strong nonlinear characteristics of contrast agents, the CTRs have been significantly enhanced using various advanced CEUS methods. However, the imaging resolution of these methods is limited by the finite bandwidth of the imaging process. This study aimed to propose a bubble-echo based deconvolution (BED) method for CEUS with both improved resolution and CTR. METHOD: The method is built on a modified convolution model and uses novel bubble-echo based point-spread-functions to reconstruct the images by regularized inverse Wiener filtering. Performances of the proposed BED for three CEUS modes are investigated through simulations and in vivo perfusion experiments. RESULTS: BED of fundamental imaging was found to have the highest improvement in imaging resolution with the resolution gain up to 2.0 ± 0.2 times, which was comparable to the approved cepstrum-based deconvolution (CED). BED of second-harmonic imaging had the best performance in CTR with an enhancement of 9.8 ± 2.3 dB, which was much higher than CED. Pulse inversion BED had both a better resolution and a higher CTR. CONCLUSION: All results indicate that BED could obtain CEUS image with both an improved resolution and a high CTR, which has important significance to microvascular perfusion evaluation in deep tissue.

2.
J Acoust Soc Am ; 140(2): 798, 2016 08.
Article in English | MEDLINE | ID: mdl-27586712

ABSTRACT

Cavitation detection and imaging are essential for monitoring high-intensity focused ultrasound (HIFU) therapies. In this paper, an active cavitation imaging method based on wavelet transform is proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The Yang-Church model, which is a combination of the Keller-Miksis equation with the Kelvin-Voigt equation for the pulsations of gas bubbles in simple linear viscoelastic solids, is utilized to construct the bubble wavelet. Experiments with porcine muscles demonstrate that image quality is associated with the initial radius of the bubble wavelet and the scale. Moreover, the Yang-Church model achieves a somewhat better performance compared with the Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model. Furthermore, the pulse inversion (PI) technique is combined with bubble wavelet transform to achieve further improvement. The cavitation-to-tissue ratio (CTR) of the best tissue bubble wavelet transform (TBWT) mode image is improved by 5.1 dB compared with that of the B-mode image, while the CTR of the best PI-based TBWT mode image is improved by 7.9 dB compared with that of the PI-based B-mode image. This work will be useful for better monitoring of cavitation in HIFU-induced therapies.

3.
J Acoust Soc Am ; 140(2): 1000, 2016 08.
Article in English | MEDLINE | ID: mdl-27586732

ABSTRACT

In this study, a unique method that combines the ultrafast active cavitation imaging technique with multiple bubble wavelet transform (MBWT) for improving cavitation detection contrast was presented. The bubble wavelet was constructed by the modified Keller-Miksis equation that considered the mutual effect among bubbles. A three-dimensional spatial model was applied to simulate the spatial distribution of multiple bubbles. The effects of four parameters on the signal-to-noise ratio (SNR) of cavitation images were evaluated, including the following: initial radii of bubbles, scale factor in the wavelet transform, number of bubbles, and the minimum inter-bubble distance. And the other two spatial models and cavitation bubble size distributions were introduced in the MBWT method. The results suggested that in the free-field experiments, the averaged SNR of images acquired by the MBWT method was improved by 7.16 ± 0.09 dB and 3.14 ± 0.14 dB compared with the values of images acquired by the B-mode and single bubble wavelet transform (SBWT) methods. In addition, in the tissue experiments, the averaged cavitation-to-tissue ratio of cavitation images acquired by the MBWT method was improved by 4.69 ± 0.25 dB and 1.74± 0.29 dB compared with that of images acquired by B-mode and SBWT methods.

4.
J Acoust Soc Am ; 137(6): 3099-106, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26093401

ABSTRACT

The quality of ultrafast active cavitation imaging (UACI) using plane wave transmission is hindered by low transmission pressure, which is necessary to prevent bubble destruction. In this study, a UACI method that combined wavelet transform with pulse inversion (PI) was proposed to enhance the contrast between the cavitation bubbles and surrounding tissues. The main challenge in using wavelet transform is the selection of the optimum mother wavelet. A mother wavelet named "cavitation bubble wavelet" and constructed according to Rayleigh-Plesset-Noltingk-Neppiras-Poritsky model was expected to obtain a high correlation between the bubbles and beamformed echoes. The method was validated by in vitro experiments. Results showed that the image quality was associated with the initial radius of bubble and the scale. The signal-to-noise ratio (SNR) of the best optimum cavitation bubble wavelet transform (CBWT) mode image was improved by 3.2 dB compared with that of the B-mode image in free-field experiments. The cavitation-to-tissue ratio of the best optimum PI-based CBWT mode image was improved by 2.3 dB compared with that of the PI-based B-mode image in tissue experiments. Furthermore, the SNR versus initial radius curve had the potential to estimate the size distribution of cavitation bubbles.

5.
J Acoust Soc Am ; 137(5): 2563-72, 2015 May.
Article in English | MEDLINE | ID: mdl-25994689

ABSTRACT

Cavitation is considered as the primary mechanism of soft tissue fragmentation (histotripsy) by pulsed high-intensity focused ultrasound. The residual cavitation bubbles have a dual influence on the histotripsy pulses: these serve as nuclei for easy generation of new cavitation, and act as strong scatterers causing energy "shadowing." To monitor the residual cavitation bubbles in histotripsy, an ultrafast active cavitation imaging method with relatively high signal-to-noise ratio and good spatial-temporal resolution was proposed in this paper, which combined plane wave transmission, minimum variance beamforming, and coherence factor weighting. The spatial-temporal evolutions of residual cavitation bubbles around a fluid-tissue interface in histotripsy under pulse duration (PD) of 10-40 µs and pulse repetition frequency (PRF) of 0.67-2 kHz were monitored by this method. The integrated bubble area curves inside the tissue interface were acquired from the bubble image sequence, and the formation process of histotripsy damage was estimated. It was observed that the histotripsy efficiency decreased with both longer PDs and higher PRFs. A direct relationship with a coefficient of 1.0365 between histotripsy lesion area and inner residual bubble area was found. These results can assist in monitoring and optimization of the histotripsy treatment further.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Sound , Ultrasonics/methods , Algorithms , Equipment Design , Gases , High-Intensity Focused Ultrasound Ablation/instrumentation , Models, Theoretical , Motion , Pressure , Signal Processing, Computer-Assisted , Surface Properties , Time Factors , Transducers, Pressure , Ultrasonics/instrumentation
6.
Ultrason Sonochem ; 22: 160-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25043556

ABSTRACT

In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5µm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.


Subject(s)
Microbubbles/therapeutic use , Thrombosis/therapy , Ultrasonic Therapy/methods , Animals , Particle Size , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...