Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(2): 103269, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064883

ABSTRACT

Since 2021, a novel strain of goose reovirus (GRV) has emerged within the goose farming industry in Guangdong province, China. This particular viral variant is distinguished by the presence of white necrotic foci primarily localized in the liver and spleen, leading to substantial economic losses for the poultry industry. However, the etiology, prevalence and genomic characteristics of the causative agent have not been thoroughly investigated. In this study, we conducted an epidemiological inquiry employing suspected GRV samples collected from May 2021 to September 2022. The macroscopic pathological and histopathological lesions associated with GRV-infected clinical specimens were examined. Moreover, we successfully isolated the GRV strain and elucidated the complete genome sequence of the isolate GD21/88. Through phylogenetic and recombination analysis, we unveiled that the GRV strains represent a novel variant resulting from multiple reassortment events. Specifically, the µNS, λC, and σNS genes of GRV were found to have originated from chicken reovirus, while the σA gene of GRV exhibited a higher degree of similarity with a novel duck reovirus. The remaining genes of GRV were traced back to Muscovy duck reovirus. Collectively, our findings underscore the significance of GRV as a pathogenic agent impacting the goose farming industry. The insights gleaned from this study contribute to a more comprehensive understanding of the epidemiology of GRV in Southern China and shed light on the genetic reassortment events exhibited by the virus.


Subject(s)
Liver Diseases , Orthoreovirus, Avian , Poultry Diseases , Reoviridae Infections , Animals , Geese/genetics , Chickens/genetics , Orthoreovirus, Avian/genetics , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Phylogeny , Genome, Viral , Genomics , Liver Diseases/veterinary , Necrosis/veterinary , China/epidemiology
2.
Oncogene ; 42(22): 1857-1873, 2023 06.
Article in English | MEDLINE | ID: mdl-37095257

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFß activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFß kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.


Subject(s)
Prostatic Intraepithelial Neoplasia , Prostatic Neoplasms , Male , Humans , Prostatic Intraepithelial Neoplasia/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostate/metabolism , DNA Damage/genetics , Transforming Growth Factor beta/genetics , Eye Proteins/metabolism , Transcription Factors/genetics
3.
Clin Exp Hypertens ; 45(1): 2166948, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-36751048

ABSTRACT

BACKGROUND: Inflammatory response of human vascular smooth muscle cells (hVSMCs) is a driving factor in hypertension progression. It has been reported that miR-3646 was significantly up-regulated in serum samples from patients with coronary artery disease and acute myocardial infarction mice. However, its role and underlying molecular mechanism related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs remain unclear. OBJECTIVE: We aimed to explore the potential molecular mechanisms related to inflammatory response of angiotensin II (Ang II)-induced hVSMCs. METHODS: Ang II-induced hypertension model was established after hVSMCs treated with 1 µM Ang II at 24 h. The interaction between microRNA 3646 (miR-3646) and cytochrome P450 2J2 (CYP2J2) was assessed by dual-luciferase reporter gene assay. MTS assay, Lipid Peroxidation MDA Assay Kit, ELISA, Western blot, and qRT-PCR were performed to examine viability, malondialdehyde (MDA) level, inflammatory cytokine levels, and the level of genes and proteins. RESULTS: Our findings illustrated that miR-3646 was up-regulated but CYP2J2 was down-regulated in Ang II-induced hVSMCs. Mechanically, miR-3646 negatively targeted to CYP2J2 in Ang II-induced hVSMCs. These findings indicated that miR-3646 regulated inflammatory response of Ang II-induced hVSMCs via targeting CYP2J2. Moreover, functional researches showed that CYP2J2 overexpression alleviated inflammatory response of Ang II-induced hVSMCs via epoxyeicosatrienoic acids/peroxisome proliferator-activated receptor-γ (EETs/PPARγ) axis, and miR-3646 aggravated inflammatory response of Ang II-induced hVSMCs via mediating CYP2J2/EETs axis. CONCLUSION: MiR-3646 accelerated inflammatory response of Ang II-induced hVSMCs via CYP2J2/EETs axis. Our findings illustrated the specific molecular mechanism of miR-3646 regulating hypertension.


Subject(s)
Hypertension , MicroRNAs , Animals , Humans , Mice , Angiotensin II/pharmacology , Cells, Cultured , Cytochrome P-450 CYP2J2 , Cytochrome P-450 Enzyme System/metabolism , Eicosanoids/metabolism
4.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36712010

ABSTRACT

Prostate cancer (PCa), the second leading cause of death in American men, includes distinct genetic subtypes with distinct therapeutic vulnerabilities. The DACH1 gene encodes a winged helix/Forkhead DNA-binding protein that competes for binding to FOXM1 sites. Herein, DACH1 gene deletion within the 13q21.31-q21.33 region occurs in up to 18% of human PCa and was associated with increased AR activity and poor prognosis. In prostate OncoMice, prostate-specific deletion of the Dach1 gene enhanced prostatic intraepithelial neoplasia (PIN), and was associated with increased TGFb activity and DNA damage. Reduced Dach1 increased DNA damage in response to genotoxic stresses. DACH1 was recruited to sites of DNA damage, augmenting recruitment of Ku70/Ku80. Reduced Dach1 expression was associated with increased homology directed repair and resistance to PARP inhibitors and TGFb kinase inhibitors. Reduced Dach1 expression may define a subclass of PCa that warrants specific therapies.

5.
Acta Pharmacol Sin ; 44(3): 661-669, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36138144

ABSTRACT

Neddylation is a type of posttranslational protein modification that has been observed to be overactivated in various cancers. UBC12 is one of two key E2 enzymes in the neddylation pathway. Reports indicate that UBC12 deficiency may suppress lung cancer cells, such that UBC12 could play an important role in tumor progression. However, systematic studies regarding the expression profile of UBC12 in cancers and its relationship to cancer prognosis are lacking. In this study, we comprehensively analyzed UBC12 expression in diverse cancer types and found that UBC12 is markedly overexpressed in most cancers (17/21), a symptom that negatively correlates with the survival rates of cancer patients, including gastric cancer. These results demonstrate the suitability of UBC12 as a potential target for cancer treatment. Currently, no effective inhibitor targeting UBC12 has been discovered. We screened a natural product library and found, for the first time, that arctigenin has been shown to significantly inhibit UBC12 enzyme activity and cullin neddylation. The inhibition of UBC12 enzyme activity was newly found to contribute to the effects of arctigenin on suppressing the malignant phenotypes of cancer cells. Furthermore, we performed proteomics analysis and found that arctigenin intervened with cullin downstream signaling pathways and substrates, such as the tumor suppressor PDCD4. In summary, these results demonstrate the importance of UBC12 as a potential therapeutic target for cancer treatment, and, for the first time, the suitability of arctigenin as a potential compound targeting UBC12 enzyme activity. Thus, these findings provide a new strategy for inhibiting neddylation-overactivated cancers.


Subject(s)
Cullin Proteins , Lung Neoplasms , Ubiquitin-Conjugating Enzymes , Humans , Apoptosis Regulatory Proteins/metabolism , Cullin Proteins/drug effects , Furans/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , NEDD8 Protein/metabolism , RNA-Binding Proteins , Ubiquitin-Conjugating Enzymes/antagonists & inhibitors , Ubiquitin-Conjugating Enzymes/drug effects
6.
Heart Vessels ; 37(6): 1085-1096, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35320391

ABSTRACT

Atherosclerosis (AS) is the basic lesion underlying the occurrence and development of cerebrovascular diseases. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays a crucial role in AS. We aimed to explore the role of SNHG16 in AS and the molecular mechanism of VSMC involvement in the regulation of AS. The expression levels of SNHG16, miR-30c-5p and SDC2 were detected by qRT-PCR. CCK-8, wound healing and Transwell assays were used to assess ox-LDL-induced VSMC proliferation, migration, and invasion, respectively. Western blot analysis was used to detect SDC2 and MEK/ERK pathway-related protein levels. A dual-luciferase reporter assay confirmed the binding of SNHG16 with miR-30c-5p and miR-30c-5p with SDC2. SNHG16 and SDC2 expression was upregulated in patients with AS and ox-LDL-induced VSMCs, while miR-30c-5p was downregulated. Ox-LDL-induced VSMC proliferation and migration were increased, and the MEK/ERK signalling pathway was activated. MiR-30c-5p was targeted to SNHG16 and SDC2. Downregulating SNHG16 or upregulating miR-30c-5p inhibited ox-LDL-induced VSMC proliferation and migration and inhibited MEK/ERK signalling pathway activation. In contrast, downregulating miR-30c-5p or upregulating SDC2 reversed the effects of downregulating SNHG16 or upregulating miR-30c-5p. Furthermore, downregulating SDC2 inhibited ox-LDL-induced proliferation and migration of VSMCs and inhibited activation of the MEK/ERK signalling pathway, while upregulating lncRNA SNHG16 reversed the effects of downregulating SDC2. Downregulation of SNHG16 inhibited VSMC proliferation and migration in AS by targeting the miR-30c-5p/SDC2 axis. This study provides a possible therapeutic approach to AS.


Subject(s)
Atherosclerosis , Intracranial Arteriosclerosis , MicroRNAs , RNA, Long Noncoding/genetics , Atherosclerosis/pathology , Cell Movement , Cell Proliferation/genetics , Cells, Cultured , Down-Regulation , Humans , Intracranial Arteriosclerosis/metabolism , Intracranial Arteriosclerosis/pathology , Lipoproteins, LDL , MicroRNAs/genetics , MicroRNAs/metabolism , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/pharmacology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Syndecan-2/genetics , Syndecan-2/metabolism , Syndecan-2/pharmacology
7.
Pharmacol Res ; 169: 105684, 2021 07.
Article in English | MEDLINE | ID: mdl-34022396

ABSTRACT

Osteosarcoma, a highly malignant tumor, is characterized by widespread and recurrent chromosomal and genetic abnormalities. In recent years, a number of elaborated sequencing analyses have made it possible to cluster the osteosarcoma based on the identification of candidate driver genes and develop targeted therapy. Here, we reviewed recent next-generation genome sequencing studies and advances in targeted therapies for osteosarcoma based on molecular classification. First, we stratified osteosarcomas into ten molecular subtypes based on genetic changes. And we analyzed potential targeted therapies for osteosarcoma based on the identified molecular subtypes. Finally, the development of targeted therapies for osteosarcoma investigated in clinical trials were further summarized and discussed. Therefore, we indicated the importance of molecular classification on the targeted therapy for osteosarcoma. And the stratification of patients based on the genetic characteristics of osteosarcoma will help to obtain a better therapeutic response to targeted therapies, bringing us closer to the era of personalized medicine.


Subject(s)
Antineoplastic Agents/therapeutic use , Bone Neoplasms/drug therapy , Molecular Targeted Therapy , Osteosarcoma/drug therapy , Animals , Antineoplastic Agents/pharmacology , Bone Neoplasms/classification , Bone Neoplasms/genetics , Genes, Neoplasm/genetics , Humans , Molecular Targeted Therapy/methods , Osteosarcoma/classification , Osteosarcoma/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...