Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8845-8860, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36459605

ABSTRACT

Scene recovery is a fundamental imaging task with several practical applications, including video surveillance and autonomous vehicles, etc. In this article, we provide a new real-time scene recovery framework to restore degraded images under different weather/imaging conditions, such as underwater, sand dust and haze. A degraded image can actually be seen as a superimposition of a clear image with the same color imaging environment (underwater, sand or haze, etc.). Mathematically, we can introduce a rank-one matrix to characterize this phenomenon, i.e., rank-one prior (ROP). Using the prior, a direct method with the complexity O(N) is derived for real-time recovery. For general cases, we develop ROP + to further improve the recovery performance. Comprehensive experiments of the scene recovery illustrate that our method outperforms competitively several state-of-the-art imaging methods in terms of efficiency and robustness.

2.
Sensors (Basel) ; 21(19)2021 Sep 25.
Article in English | MEDLINE | ID: mdl-34640732

ABSTRACT

Road traffic accidents have been listed in the top 10 global causes of death for many decades. Traditional measures such as education and legislation have contributed to limited improvements in terms of reducing accidents due to people driving in undesirable statuses, such as when suffering from stress or drowsiness. Attention is drawn to predicting drivers' future status so that precautions can be taken in advance as effective preventative measures. Common prediction algorithms include recurrent neural networks (RNNs), gated recurrent units (GRUs), and long short-term memory (LSTM) networks. To benefit from the advantages of each algorithm, nondominated sorting genetic algorithm-III (NSGA-III) can be applied to merge the three algorithms. This is named NSGA-III-optimized RNN-GRU-LSTM. An analysis can be made to compare the proposed prediction algorithm with the individual RNN, GRU, and LSTM algorithms. Our proposed model improves the overall accuracy by 11.2-13.6% and 10.2-12.2% in driver stress prediction and driver drowsiness prediction, respectively. Likewise, it improves the overall accuracy by 6.9-12.7% and 6.9-8.9%, respectively, compared with boosting learning with multiple RNNs, multiple GRUs, and multiple LSTMs algorithms. Compared with existing works, this proposal offers to enhance performance by taking some key factors into account-namely, using a real-world driving dataset, a greater sample size, hybrid algorithms, and cross-validation. Future research directions have been suggested for further exploration and performance enhancement.


Subject(s)
Algorithms , Neural Networks, Computer , Attention , Forecasting , Humans , Memory, Long-Term
3.
Sensors (Basel) ; 21(14)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34300648

ABSTRACT

Real-time collision-avoidance navigation of autonomous ships is required by many application scenarios, such as carriage of goods by sea, search, and rescue. The collision avoidance algorithm is the core of autonomous navigation for Maritime autonomous surface ships (MASS). In order to realize real-time and free-collision under the condition of multi-ship encounter in an uncertain environment, a real-time collision avoidance framework is proposed using B-spline and optimal decoupling control. This framework takes advantage to handle the uncertain environment with limited sensing MASS which plans dynamically feasible, highly reliable, and safe feasible collision avoidance. First, owing to the collision risk assessment, a B-spline-based collision avoidance trajectory search (BCATS) algorithm is proposed to generate free-collision trajectories effectively. Second, a waypoint-based collision avoidance trajectory optimization is proposed with the path-speed decoupling control. Two benefits, a reduction of control cost and an improvement in the smoothness of the collision avoidance trajectory, are delivered. Finally, we conducted an experiment using the Electronic Chart System (ECS). The results reveal the robustness and real-time collision avoidance trajectory planned by the proposed collision avoidance system.


Subject(s)
Algorithms , Risk Assessment
4.
Sensors (Basel) ; 21(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946443

ABSTRACT

Global warming is a leading world issue driving the common social objective of reducing carbon emissions. People have witnessed the melting of ice and abrupt changes in climate. Reducing electricity usage is one possible method of slowing these changes. In recent decades, there have been massive worldwide rollouts of smart meters that automatically capture the total electricity usage of houses and buildings. Electricity load disaggregation (ELD) helps to break down total electricity usage into that of individual appliances. Studies have implemented ELD models based on various artificial intelligence techniques using a single ELD dataset. In this paper, a powerline noise transformation approach based on optimized complete ensemble empirical model decomposition and wavelet packet transform (OCEEMD-WPT) is proposed to merge the ELD datasets. The practical implications are that the method increases the size of training datasets and provides mutual benefits when utilizing datasets collected from other sources (especially from different countries). To reveal the effectiveness of the proposed method, it was compared with CEEMD-WPT (fixed controlled coefficients), standalone CEEMD, standalone WPT, and other existing works. The results show that the proposed approach improves the signal-to-noise ratio (SNR) significantly.

5.
Sensors (Basel) ; 20(23)2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33291731

ABSTRACT

One of the key smart city visions is to bring smarter transport networks, specifically intelligent/smart transportation [...].

6.
Sensors (Basel) ; 20(5)2020 Mar 07.
Article in English | MEDLINE | ID: mdl-32156100

ABSTRACT

Driver drowsiness and stress are major causes of traffic deaths and injuries, which ultimately wreak havoc on world economic loss. Researchers are in full swing to develop various algorithms for both drowsiness and stress recognition. In contrast to existing works, this paper proposes a generic model using multiple-objective genetic algorithm optimized deep multiple kernel learning support vector machine that is capable to recognize both driver drowsiness and stress. This algorithm simplifies the research formulations and model complexity that one model fits two applications. Results reveal that the proposed algorithm achieves an average sensitivity of 99%, specificity of 98.3% and area under the receiver operating characteristic curve (AUC) of 97.1% for driver drowsiness recognition. For driver stress recognition, the best performance is yielded with average sensitivity of 98.7%, specificity of 98.4% and AUC of 96.9%. Analysis also indicates that the proposed algorithm using multiple-objective genetic algorithm has better performance compared to the grid search method. Multiple kernel learning enhances the performance significantly compared to single typical kernel. Compared with existing works, the proposed algorithm not only achieves higher accuracy but also addressing the typical issues of dataset in simulated environment, no cross-validation and unreliable measurement stability of input signals.


Subject(s)
Automobile Driving , Sleepiness , Support Vector Machine , Algorithms , Humans , ROC Curve , Stress, Psychological
7.
Sensors (Basel) ; 17(8)2017 Aug 04.
Article in English | MEDLINE | ID: mdl-28777353

ABSTRACT

The Shipboard Automatic Identification System (AIS) is crucial for navigation safety and maritime surveillance, data mining and pattern analysis of AIS information have attracted considerable attention in terms of both basic research and practical applications. Clustering of spatio-temporal AIS trajectories can be used to identify abnormal patterns and mine customary route data for transportation safety. Thus, the capacities of navigation safety and maritime traffic monitoring could be enhanced correspondingly. However, trajectory clustering is often sensitive to undesirable outliers and is essentially more complex compared with traditional point clustering. To overcome this limitation, a multi-step trajectory clustering method is proposed in this paper for robust AIS trajectory clustering. In particular, the Dynamic Time Warping (DTW), a similarity measurement method, is introduced in the first step to measure the distances between different trajectories. The calculated distances, inversely proportional to the similarities, constitute a distance matrix in the second step. Furthermore, as a widely-used dimensional reduction method, Principal Component Analysis (PCA) is exploited to decompose the obtained distance matrix. In particular, the top k principal components with above 95% accumulative contribution rate are extracted by PCA, and the number of the centers k is chosen. The k centers are found by the improved center automatically selection algorithm. In the last step, the improved center clustering algorithm with k clusters is implemented on the distance matrix to achieve the final AIS trajectory clustering results. In order to improve the accuracy of the proposed multi-step clustering algorithm, an automatic algorithm for choosing the k clusters is developed according to the similarity distance. Numerous experiments on realistic AIS trajectory datasets in the bridge area waterway and Mississippi River have been implemented to compare our proposed method with traditional spectral clustering and fast affinity propagation clustering. Experimental results have illustrated its superior performance in terms of quantitative and qualitative evaluations.

8.
PLoS One ; 12(4): e0175840, 2017.
Article in English | MEDLINE | ID: mdl-28414747

ABSTRACT

Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.


Subject(s)
Transportation , Humans , Models, Theoretical , Safety
9.
Sensors (Basel) ; 17(3)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28273827

ABSTRACT

Dynamic magnetic resonance imaging (MRI) has been extensively utilized for enhancing medical living environment visualization, however, in clinical practice it often suffers from long data acquisition times. Dynamic imaging essentially reconstructs the visual image from raw (k,t)-space measurements, commonly referred to as big data. The purpose of this work is to accelerate big medical data acquisition in dynamic MRI by developing a non-convex minimization framework. In particular, to overcome the inherent speed limitation, both non-convex low-rank and sparsity constraints were combined to accelerate the dynamic imaging. However, the non-convex constraints make the dynamic reconstruction problem difficult to directly solve through the commonly-used numerical methods. To guarantee solution efficiency and stability, a numerical algorithm based on Alternating Direction Method of Multipliers (ADMM) is proposed to solve the resulting non-convex optimization problem. ADMM decomposes the original complex optimization problem into several simple sub-problems. Each sub-problem has a closed-form solution or could be efficiently solved using existing numerical methods. It has been proven that the quality of images reconstructed from fewer measurements can be significantly improved using non-convex minimization. Numerous experiments have been conducted on two in vivo cardiac datasets to compare the proposed method with several state-of-the-art imaging methods. Experimental results illustrated that the proposed method could guarantee the superior imaging performance in terms of quantitative and visual image quality assessments.


Subject(s)
Magnetic Resonance Imaging , Algorithms , Heart , Humans
10.
J Xray Sci Technol ; 25(2): 233-245, 2017.
Article in English | MEDLINE | ID: mdl-28234275

ABSTRACT

PURPOSE: Thoracic aortic dissection (TAD) is considered one of the most catastrophic and non-traumatic cardiovascular diseases associated with high morbidity and mortality rates in clinical treatment. The purpose of this paper is to investigate the pulsatile hemodynamics changes throughout a cardiac cycle in a Stanford Type B TAD model with the aid of computational fluid dynamics (CFD) method. METHODS: A patient-specific dissected aorta geometry was reconstructed from the three-dimensional (3D) computed tomography angiography (CTA) scanning. The realistic time-dependent pulsatile boundary conditions were prescribed for our 3D patient-specific TAD model. Blood was considered to be an incompressible, Newtonian fluid. The aortic wall was assumed to be rigid, and a no-slip boundary condition was applied at the wall. CFD simulations were processed using the finite volume (FV) method to investigate the pulsatile hemodynamics in terms of blood flow velocity, aortic wall pressure, wall shear stress and flow vorticity. In the experiments, blood velocity, pressure, wall shear stress and vorticity distributions were analyzed qualitatively and quantitatively. RESULTS: The experimental results demonstrated a high wall shear stress and strong vertical flow at dissection initiation. The results also indicated that wall shear progressed along the false lumen, which is a possible cause of blood flow between aortic wall layers.


Subject(s)
Aortic Aneurysm, Thoracic/diagnostic imaging , Aortic Dissection/diagnostic imaging , Computed Tomography Angiography/methods , Patient-Specific Modeling , Pulsatile Flow/physiology , Aortic Dissection/physiopathology , Aortic Aneurysm, Thoracic/physiopathology , Humans , Imaging, Three-Dimensional
11.
Sensors (Basel) ; 17(1)2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28106764

ABSTRACT

Single-image blind deblurring for imaging sensors in the Internet of Things (IoT) is a challenging ill-conditioned inverse problem, which requires regularization techniques to stabilize the image restoration process. The purpose is to recover the underlying blur kernel and latent sharp image from only one blurred image. Under many degraded imaging conditions, the blur kernel could be considered not only spatially sparse, but also piecewise smooth with the support of a continuous curve. By taking advantage of the hybrid sparse properties of the blur kernel, a hybrid regularization method is proposed in this paper to robustly and accurately estimate the blur kernel. The effectiveness of the proposed blur kernel estimation method is enhanced by incorporating both the L 1 -norm of kernel intensity and the squared L 2 -norm of the intensity derivative. Once the accurate estimation of the blur kernel is obtained, the original blind deblurring can be simplified to the direct deconvolution of blurred images. To guarantee robust non-blind deconvolution, a variational image restoration model is presented based on the L 1 -norm data-fidelity term and the total generalized variation (TGV) regularizer of second-order. All non-smooth optimization problems related to blur kernel estimation and non-blind deconvolution are effectively handled by using the alternating direction method of multipliers (ADMM)-based numerical methods. Comprehensive experiments on both synthetic and realistic datasets have been implemented to compare the proposed method with several state-of-the-art methods. The experimental comparisons have illustrated the satisfactory imaging performance of the proposed method in terms of quantitative and qualitative evaluations.

12.
Med Phys ; 42(9): 5167-87, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26328968

ABSTRACT

PURPOSE: Magnetic resonance imaging (MRI) often suffers from apparent noise during image acquisition and transmission. The degraded data can easily result in nonrobust postprocessing steps in medical image analysis. The purpose of this study is to eliminate noise effects and improve image quality using a nonlocal feature-preserving denoising method. METHODS: From a statistical point of view, the magnitude MR images in the presence of noise are usually modeled using a Rician distribution. In the maximum a posteriori framework, a nonlocal total variation (NLTV)-based feature-preserving MRI Rician denoising model is proposed by taking full advantage of high degree of selfsimilarity and redundancy within MR images. However, the nonconvex data-fidelity term and nonsmooth NLTV regularizer make the denoising problem difficult to solve. To guarantee solution stability, a piecewise convex function is first introduced to approximate the nonconvex version. In what follows, a two-step optimization approach is developed to solve the resulting convex denoising model. In each step of this approach, the subproblem can be efficiently solved using existing optimization algorithms. The method performance is evaluated using synthetic and clinical MRI data sets as well as one diffusion tensor MRI (DTI) data set. Extensive experiments are conducted to compare the proposed method with several state-of-the-art denoising methods. RESULTS: For the synthetic and clinical MRI data sets, the proposed method considerably outperformed other competing denoising methods in terms of both quantitative and visual quality evaluations. It was capable of effectively removing noise in MR images and enhancing tissue characterization. The advantage of the proposed method became more significant as the noise level increased. For the DTI data set, compared with other denoising methods, the proposed method not only preserved the apparent diffusion coefficient but also generated more regular fractional anisotropy (FA) and color-coded FA without obvious visual artifacts. CONCLUSIONS: This study describes and validates a nonlocal feature-preserving method for Rician noise reduction on synthetic and real MRI data sets. By exploiting the feature-preserving capability of NLTV regularizer, the proposed method maintains a good balance between noise reduction and fine detail preservation. The experiments have demonstrated a huge potential of the proposed method for routine clinical practice.


Subject(s)
Image Enhancement/methods , Magnetic Resonance Imaging , Signal-To-Noise Ratio , Algorithms , Humans , Male , Middle Aged , Quality Control , Stroke/diagnosis
13.
Magn Reson Imaging ; 32(6): 702-20, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24746774

ABSTRACT

Magnetic resonance imaging (MRI) is an outstanding medical imaging modality but the quality often suffers from noise pollution during image acquisition and transmission. The purpose of this study is to enhance image quality using feature-preserving denoising method. In current literature, most existing MRI denoising methods did not simultaneously take the global image prior and local image features into account. The denoising method proposed in this paper is implemented based on an assumption of spatially varying Rician noise map. A two-step wavelet-domain estimation method is developed to extract the noise map. Following a Bayesian modeling approach, a generalized total variation-based MRI denoising model is proposed based on global hyper-Laplacian prior and Rician noise assumption. The proposed model has the properties of backward diffusion in local normal directions and forward diffusion in local tangent directions. To further improve the denoising performance, a local variance estimator-based method is introduced to calculate the spatially adaptive regularization parameters related to local image features and spatially varying noise map. The main benefit of the proposed method is that it takes full advantage of the global MR image prior and local image features. Numerous experiments have been conducted on both synthetic and real MR data sets to compare our proposed model with some state-of-the-art denoising methods. The experimental results have demonstrated the superior performance of our proposed model in terms of quantitative and qualitative image quality evaluations.


Subject(s)
Brain , Image Enhancement/methods , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Anisotropy , Artifacts , Bayes Theorem , Diffusion Tensor Imaging , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...