Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Horiz ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38932603

ABSTRACT

The solar anti-icing/deicing (SADI) strategy represents an environmentally friendly approach for removing ice efficiently. However, the extensive use of photothermal materials could negatively impact financial performance. Therefore, enhancing light utilization efficiency, especially by optimizing the design of a structure with a low content of photothermal materials, has rapidly become a focal point of research. Drawing inspiration from the antireflective micro-nano structure of compound eyes and the thermal insulating hollow structure of polar bear hair, we proposed a new strategy to design a bionic micro-nano hollow film (MNHF). The MNHF was created using a composite manufacturing process that combines femtosecond laser ablation with template transfer techniques. Both theoretical simulations and empirical tests have confirmed that this structure significantly improves photothermal conversion efficiency and thermal radiation capability. Compared to plane film, the photothermal conversion efficiency of MNHF is increased by 45.85%. Under 1.5 sun, the equilibrium temperature of MNHF can reach 73.8 °C. Moreover, even after 10 icing-deicing cycles, MNHF maintains an ultra-low ice adhesion strength of 1.8 ± 0.3 kPa. Additionally, the exceptional mechanical stability, chemical resistance, and self-cleaning capabilities of the MNHF make its practical application feasible. This innovative structure paves the way for designing cost-effective and robust surfaces for efficient photothermal anti-icing/deicing on airplane wings.

2.
Nat Commun ; 15(1): 777, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38278811

ABSTRACT

Superhydrophobic surfaces demonstrate excellent anti-icing performance under static conditions. However, they show a marked decrease in icing time under real flight conditions. Here we develop an anti-icing strategy using ubiquitous wind field to improve the anti-icing efficiency of superhydrophobic surfaces during flight. We find that the icing mass on hierarchical superhydrophobic surface with a microstructure angle of 30° is at least 40% lower than that on the conventional superhydrophobic plate, which is attributed to the combined effects of microdroplet flow upwelling induced by interfacial airflow and microdroplet ejection driven by superhydrophobic characteristic. Meanwhile, the disordered arrangement of water molecules induced by the specific 30° angle also raises the energy barriers required for nucleation, resulting in an inhibition of the nucleation process. This strategy of microdroplet movement manipulation induced by interfacial airflow is expected to break through the anti-icing limitation of conventional superhydrophobic materials in service conditions and can further reduce the risk of icing on the aircraft surface.

3.
J Chem Phys ; 159(18)2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37962446

ABSTRACT

Effect mechanisms of the undercooling degree and the surface configuration on the ice growth characteristics were revealed under micro-droplets icing conditions. Preferential ice crystals appear firstly on the surfaces due to the randomness of icing, and obtain growth advantages to form protruding structures. Protruding structures block the incoming droplets from contacting the substrates, causing voids around the structures. The undercooling degree mainly affects the density and the growth rate of preferential ice crystals. With the increase of undercooling degree, the preferential ice crystals have higher density and growth rate, resulting in stronger growth advantage and higher porosity. The surface configuration affects the growth mode, and the ice layer grows with uniform mode, spreading mode and structure-induced mode on the aluminum, smooth Polytetrafluoroethylene (PTFE) and rough PTFE surface respectively, causing the needle-like, ridge-like and cluster-like ice crystals. The rough structures effectively improve the porosity of the ice layer, which is beneficial for optimizing the icephobic property of the materials. This paper provides important theoretical guidance for the design of subsequent icephobic materials.

4.
ACS Nano ; 17(21): 21749-21760, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37843015

ABSTRACT

Wind turbine blades are often covered with ice and snow, which inevitably reduces their power generation efficiency and lifetime. Recently, a superhydrophobic surface has attracted widespread attention due to its potential values in anti-icing/deicing. However, the superhydrophobic surface can easily transition from Cassie-Baxter to Wenzel at low temperature, limiting its wide applications. Herein, inspired by the excellent water resistance and cold tolerance of Trifolium repens L. endowed by its micronano structure and low surface energy, a fresh structure was prepared by combining femtosecond laser processing technology and a boiling water treatment method. The prepared icephobic surface aluminum alloy (ISAl) mainly consists of a periodic microcrater array, nonuniform microclusters, and irregular nanosheets. This three-scale structure greatly promotes the stability of the Cassie-Baxter state. The critical Laplace pressure of ISAl is up to 1437 Pa, and the apparent water contact angle (CA) is higher than 150° at 0 °C. Those two factors contribute to its excellent anti-icing and deicing performances. The results show that the static icing delay time reaches 2577 s, and the ice adhesion strength is only 1.60 kPa. Furthermore, the anti-icing and deicing abilities of the proposed ISAl were examined under the environment of low temperature and high relative humidity to demonstrate its effectiveness. The dynamic anti-icing time of ISAl in extreme environments is up to 5 h, and ice can quickly fall with a speed of 34 r/min when it is in a horizontal rotational motion. Finally, ISAl has excellent reusability and mechanical durability, with the ice adhesion strength still being less than 6 kPa and the CA greater than 150° after 15 cycles of icing-deicing tests. The proposed structure would offer a promising strategy for the efficient anti-icing and deicing of wind turbine blades.

5.
Langmuir ; 39(29): 10199-10208, 2023 Jul 25.
Article in English | MEDLINE | ID: mdl-37436938

ABSTRACT

Superhydrophobic surfaces have shown significant potential for the passive anti-icing application due to their unique water repellency. Reducing the contact time between the impacting droplets and the underlying surfaces with certain textures, especially applying the pancake bouncing mechanism, is expected to eliminate droplet icing upon impingement. However, the anti-icing performance of such superhydrophobic surfaces against the impact of supercooled water droplets has not yet been examined. Therefore, we fabricated a typical post-array superhydrophobic surface (PSHS) and a flat superhydrophobic surface (FSHS), to study the droplet impact dynamics on them with controlled temperature and humidity. The contact time and the bouncing behavior on these surfaces and their dependence on the surface temperature, Weber number, and surface frost were systematically investigated. The conventional rebound and full adhesion were observed on the FSHS, and the adhesion is mainly induced by the penetration of the droplet into the surface micro/nanostructures and the consequent Cassie-to-Wenzel transition. On the PSHS, four distinct regimes including pancake rebound, conventional rebound, partial rebound, and full adhesion were observed, where the contact time increases correspondingly. Over a certain Weber number range, the pancake rebound regime where the droplet bounces off the surface with a dramatically shortened contact time benefits the anti-icing performance. By further decreasing the surface temperature, the pancake rebound turns into the conventional rebound, where the droplet is not levitated after the capillary emptying process. Our scale analysis indicates that the frost between the posts reduces the capillary energy stored during the downward penetration, resulting in the failure of the pancake bouncing. A droplet adheres onto the frosted surface at sufficiently low temperature, especially at larger Weber numbers, on account of the coupling influence of droplet nucleation and wetting transition.

6.
J Colloid Interface Sci ; 629(Pt B): 326-335, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36162390

ABSTRACT

Understanding the interfacial mechanical properties between hydrate and solids is vital to designing and fabricating surfaces for hydrate management. Herein, the role of the surface wettability, the type of solid substrate and temperature on the interfacial adhesion properties of tetrahydrofuran (THF) hydrate and ice were examined by force analysis based shearing measurements and molecular dynamics (MD) simulations. The results showed that the adhesion strength of THF hydrate and ice on silica varies with the compositions of coating, and the adhesion strength of ice is larger than that of THF hydrate for all investigated solid substrates. Particularly, in contrast to a linear relationship between 1 + cosθr and hydrate adhesion on organic silanes/thiols/polymer surfaces, the hydrate adhesion on the coated inorganic glass surfaces is enhanced as a function of 1 + cosθr, in which θr is the receding contact angle. MD simulations uncovered that the adhesion strength of ice on solid substrates is dominated by the quasi-liquid water layer, however, that of hydrate is governed not only by the quasi-liquid layer but also newly formed unconventional clathrate cages. This study provides new insights and perspectives into the hydrate adhesion on solid surfaces, which is of help to develop hydrate-phobic coatings for advanced hydrate management.

7.
J Phys Chem Lett ; 13(26): 6117-6122, 2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35759359

ABSTRACT

The relation between polymer molecular chains arrangement and ice adhesion was studied at the molecular scale, and the energy states of water molecules on the poly(tetrafluoroethylene) surface were analyzed to explain the energy essence of ice adhesion. The ice adhesion on crystalline poly(tetrafluoroethylene) displayed a clear anisotropy phenomenon. Further research proved that the energy states of water molecules along the vertical direction of the molecular chains fluctuated regularly, and the water molecules in gaps between molecular chains were in the energy troughs, leading to the formation of energy traps. Water molecules needed more energy from outside to escape the energy traps, causing additional resistance to the ice movement and obvious increase of ice adhesion. Therefore, ice adhesion was closely related to the distribution of energy traps in the direction of ice removing, which mainly depended on the possibility of molecular chains perpendicularly arranged in the direction of ice removing.

8.
Langmuir ; 38(3): 937-944, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34894687

ABSTRACT

Ice accumulation on various surfaces in low-temperature and high-humidity environments is still a major challenge for several engineering applications. Herein, we fabricated a kind of PDMS coating with the introduction of porous structures under the surface by a two-step curing and phase separation method. The coatings with no further surface modification showed good hydrophobicity and icephobicity, and the typical ice adhesion strength was down to 40 kPa with a water contact angle of 116.5°. More than that, the porous PDMS coatings showed extraordinary icephobicity, especially toward large-scale ice (>10 cm2). In this case, the large-scale ice layer can be rapidly removed under a small external deicing force in a form of interface crack propagation rather than whole direct fracture. It was confirmed that by regulating the pore size and porosity of PDMS coatings properly, the stiffness mismatch between coatings and ice can be controlled to induce the initiation of interfacial cracks. On this basis, under the condition of a large-scale icing area, a small external deicing force can cause an increased surface stress concentration, and the formed interface cracks can propagate quickly, resulting in the ice layer falling off easily. In addition, under the influence of the size effect, ice can be removed without an additional force, and the minimum external force (per unit width) can be only 60 N/cm. This paper proposes that prefabricating a large number of microcracks at the interface can significantly weaken the bonding between ice and coatings, that is, reduce the fracture toughness. The new coatings have a remarkable effect toward large-scale icing.

9.
ACS Appl Mater Interfaces ; 12(22): 25484-25493, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32406672

ABSTRACT

Sustainability, eco-efficiency, and green chemistry guide the development of new materials in various fields. Herein, we designed and fabricated bio-based superhydrophobic coatings by means of a facile spraying synthesized method. The as-prepared superhydrophobic coatings exhibited high water repellency with higher water contact angle being up to 156.9 ± 2.7° and a lower sliding angle of only 4.3 ± 0.6°. Also, the water adhesion on the superhydrophobic coatings was as low as 11 µN, which was far less than that (346 µN) of the normal polyurethane surfaces. The superhydrophobic properties still retained high stability under the conditions of soaking in acid solution (pH = 1) and alkaline solution (pH = 13). Meanwhile, the as-prepared bio-based superhydrophobic coatings were verified for effective corrosion and pollution protection ability. The electrochemical measurements showed excellent corrosion resistance with a higher corrosion voltage of -204.7 mV and lower corrosion current of 1.494 × 10-5 A/cm2. The corrosion protection efficiency reached a value of 95.2%, and meantime, the superhydrophobic coatings displayed higher antipollution performance without any stains when they were removed from the polluted liquids. On this basis, the underlying physical-chemical mechanisms clearly revealed that the surface micro-nanostructures could capture the continuous and stable air layer to segregate the corrosion and pollution media.

SELECTION OF CITATIONS
SEARCH DETAIL
...