Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(5): e2205785, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36507571

ABSTRACT

Soil health is one of the key factors in determining the sustainability of global agricultural systems and the stability of natural ecosystems. Microbial decomposition activity plays an important role in soil health; and gaining spatiotemporal insights into this attribute is critical for understanding soil function as well as for managing soils to ensure agricultural supply, stem biodiversity loss, and mitigate climate change. Here, a novel in situ electronic soil decomposition sensor that relies on the degradation of a printed conductive composite trace utilizing the biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as a binder is presented. This material responds selectively to microbially active environments with a continuously varying resistive signal that can be readily instrumented with low-cost electronics to enable wide spatial distribution. In soil, a correlation between sensor response and intensity of microbial decomposition activity is observed and quantified by comparison with respiration rates over 14 days, showing that devices respond predictably to both static conditions and perturbations in general decomposition activity.

2.
Sci Total Environ ; 624: 1478-1487, 2018 May 15.
Article in English | MEDLINE | ID: mdl-29929258

ABSTRACT

The grasslands of northern China store a large amount of soil organic carbon (SOC), and the small changes in SOC stock could significantly affect the regional C cycle. However, recent estimates of SOC changes in this region are highly controversial. In this study, we examined the changes in the SOC density (SOCD) in the upper 30cm of the grasslands of northern China between the 1980s and 2000s, using an improved approach that integrates field-based measurements into machine learning algorithms (artificial neural network (ANN) and random forest (RF)). The RF-generated SOCD averaged 5.55kgCm-2 in the 1980s and 5.53kgCm-2 in the 2000s, and the change ranged from -0.17 to 0.22kgCm-2 at the 95% confidence level, suggesting that the overall SOCD did not vary significantly during the study period. However, the change in SOCD exhibited large regional variability; the topsoil of the Inner Mongolian grasslands experienced significant C loss (4.86 vs. 4.33kgCm-2), while that of the Xinjiang grasslands exhibited an accumulation of C (5.55 vs. 6.46kgCm-2). Furthermore, the topsoil C in the Tibetan alpine grasslands remained relatively stable (6.12 vs. 6.06kgCm-2). A comparison of the different grassland types indicated that SOCD significantly decreased in typical steppe, whereas it increased in mountain meadow, and remained stable in the other grasslands (alpine meadow, alpine steppe, mountain steppe and desert steppe). Climate change could partly explain the changes in the SOCD of the different grassland types. Increases in precipitation could lead to SOC accumulation in temperate grasslands and SOC loss in alpine grasslands, while climate warming is likely to cause SOC loss in temperate grasslands. Overall, our study suggests that the grasslands of northern China remained a neutral SOC sink between the 1980s and 2000s.

SELECTION OF CITATIONS
SEARCH DETAIL
...