Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 244: 116105, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38552420

ABSTRACT

BACKGROUND: Actinidia arguta leaves (AAL) are traditionally consumed as a vegetable and as tea in folk China and Korea. Previous studies have reported the anti-diabetic effect of AAL, but its bioactive components and mechanism of action are still unclear. AIM OF THE STUDY: This study aims to identify the hypoglycemic active components of AAL by combining serum pharmacochemistry and network pharmacology and to elucidate its possible mechanism of action. METHODS: Firstly, the effective components in mice serum samples were characterized by UPLC-Q/TOF-MSE. Furthermore, based on these active ingredients, network pharmacology analysis was performed to establish an "H-C-T-P-D" interaction network and reveal possible biological mechanisms. Finally, the affinity between serum AAL components and the main proteins in the important pathways above was investigated through molecular docking analysis. RESULTS: Serum pharmacochemistry analysis showed that 69 compounds in the serum samples were identified, including 23 prototypes and 46 metabolites. The metabolic reactions mainly included deglycosylation, dehydration, hydrogenation, methylation, acetylation, glucuronidation, and sulfation. Network pharmacology analysis showed that the key components quercetin, pinoresinol diglucoside, and 5-O-trans-p-coumaroyl quinic acid butyl ester mainly acted on the core targets PTGS2, HRAS, RELA, PRKCA, and BCL2 targets and through the PI3K-Akt signaling pathway, endocrine resistance, and MAPK signaling pathway to exert a hypoglycemic effect. Likewise, molecular docking results showed that the three potential active ingredients had good binding effects on the five key targets. CONCLUSION: This study provides a basis for elucidating the pharmacodynamic substance basis of AA against T2DM and further exploring the mechanism of action.


Subject(s)
Actinidia , Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Molecular Docking Simulation , Network Pharmacology , Plant Extracts , Plant Leaves , Actinidia/chemistry , Plant Leaves/chemistry , Animals , Mice , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Male , Chromatography, High Pressure Liquid/methods , Signal Transduction/drug effects
2.
Food Res Int ; 163: 112228, 2023 01.
Article in English | MEDLINE | ID: mdl-36596158

ABSTRACT

Actinidia arguta, an edible berry plant with high nutritional values, has been widely used in Asian countries as a food and traditional medicinal herb. The well-recognized health-promoting properties of A. arguta were associated with its bioactive components in its different botanical parts. To rapidly screen and identify chemical components and simultaneously determine the potential metabolites from different parts of A. arguta, UPLC-Q-TOF-MSE coupled with UNIFI platform and multivariate statistical analysis approach was established in this study. As a result, a total of 107 components were identified from the four different parts of A. arguta, in which 31 characteristic chemical markers were discovered among them, including 12, 8, 6, and 5 compounds from the fruits, leaves, roots, and stems, respectively. These results suggested that the combination of UPLC-Q-TOF-MSE and metabolomic analysis is a powerful method to rapidly screen characteristic markers for the quality control of A. arguta.


Subject(s)
Actinidia , Plants, Medicinal , Actinidia/chemistry , Metabolomics , Plant Roots/chemistry , Fruit/chemistry
3.
Nutrients ; 14(19)2022 Sep 25.
Article in English | MEDLINE | ID: mdl-36235633

ABSTRACT

Forty compounds were isolated and characterized from A. tenuissimum flower. Among them, twelve flavonoids showed higher α-glucosidase inhibition activities in vitro than acarbose, especially kaempferol. The molecular docking results showed that the binding of kaempferol to α-glucosidase (GAA) could reduce the hydrolysis of substrates by GAA and reduce the glucose produced by hydrolysis, thus exhibiting α-glucosidase inhibition activities. The in vivo experiment results showed that flavonoids-rich A. tenuissimum flower could decrease blood glucose and reduce lipid accumulation. The protein expression levels of RAC-alpha serine/threonine-protein kinase (AKT1), peroxisome proliferator activated receptor gamma (PPARG), and prostaglandin G/H synthase 2 (PTGS2) in liver tissue were increased. In addition, the Firmicutes/Bacteroidetes (F/B) ratio was increased, the level of gut probiotics Bifidobacterium was increased, and the levels of Enterobacteriaceae and Staphylococcus were decreased. The carbohydrate metabolism, lipid metabolism, and other pathways related to type 2 diabetes mellitus were activated. This study indicating flavonoids-rich A. tenuissimum flower could improve glycolipid metabolic disorders and inflammation in diabetic mice by modulating the protein expression and gut microbiota.


Subject(s)
Allium , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Acarbose/pharmacology , Animals , Blood Glucose/metabolism , Cyclooxygenase 2 , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/metabolism , Flavonoids/chemistry , Flowers , Glucose/metabolism , Glycolipids/pharmacology , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Kaempferols/pharmacology , Lipids/pharmacology , Mice , Molecular Docking Simulation , Network Pharmacology , PPAR gamma , Prostaglandins , Protein Kinases , Serine/pharmacology , Threonine , alpha-Glucosidases
4.
Food Funct ; 13(7): 3931-3945, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35289350

ABSTRACT

Twenty glycoside derivatives and nine flavonoids from the leaves of Pueraria (P. thomsonii) were isolated by column chromatography and characterized by nuclear magnetic resonance spectroscopy (NMR) and high performance liquid chromatography (HPLC). The contents of twenty glycosides and nine flavonoids from the extract of P. thomsonii leaf (PL) were 173.3 mg g-1 and 134.7 mg g-1, respectively. Two flavonoids with the highest content were robinin (49.28 mg g-1) and puerarin (42.87 mg g-1). Six flavonoids, i.e. puerarin, robinin, rutin, quercetin, quercitrin, and kaempferol showed more inhibitory effects against α-glucosidase than acarbose. PL could effectively increase the level of insulin, decrease the content of fasting blood glucose, reduce lipid accumulation in plasma, ameliorate oxidative injury and inflammation, and relieve liver and kidney damage in diabetic mice. Moreover, PL could increase intestinal probiotics to improve metabolic disorders caused by diabetes and decrease the level of Clostridium celatum to relieve inflammation. This study suggested that PL or its glycoside derivatives and flavonoids regulating glycolipid metabolism and inflammation levels might have the potential to be used to control type 2 diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Pueraria , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diet, High-Fat/adverse effects , Flavonoids/chemistry , Glycosides/chemistry , Mice , Plant Extracts/chemistry , Plant Leaves/chemistry , Pueraria/chemistry , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL
...