Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Signal ; 14(699): eabe3773, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34516755

ABSTRACT

Morphine and other opiates are highly effective for treating moderate to severe pain. However, morphine-induced hyperalgesia and analgesic tolerance prevent durable efficacy in patients. Here, we investigated the underlying molecular mechanisms of this phenomenon. We found that repeated subcutaneous injections of morphine in mice increased the abundance of the cytokine interleukin-33 (IL-33) primarily in oligodendrocytes and astrocytes and that of its receptor ST2 mainly in astrocytes. Pharmacological inhibition or knockdown of IL-33 or ST2 in the spinal cord attenuated morphine-induced hyperalgesia and analgesic tolerance in mice, as did global knockout of either Il33 or St2, which also reduced morphine-enhanced astroglial activation and excitatory synaptic transmission. Furthermore, a pathway mediated by tumor necrosis factor receptor­associated factor 6 (TRAF6) and the kinase JNK in astrocytes was required for IL-33­mediated hyperalgesia and tolerance through promoting the production of the chemokine CXCL12 in the spinal cord. The findings suggest that targeting IL-33­ST2 signaling could enable opioids to produce sustained analgesic effects in chronic pain management.


Subject(s)
Hyperalgesia , Morphine , Animals , Hyperalgesia/chemically induced , Interleukin-33 , Morphine/adverse effects , Rats , Rats, Sprague-Dawley , Receptors, Interleukin-1 , Spinal Cord
2.
Sci Signal ; 9(437): ra71, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27436359

ABSTRACT

The transient receptor potential channels (TRPs) respond to chemical irritants and temperature. TRPV1 responds to the itch-inducing endogenous signal histamine, and TRPA1 responds to the itch-inducing chemical chloroquine. We showed that, in sensory neurons, TRPV4 is important for both chloroquine- and histamine-induced itch and that TRPV1 has a role in chloroquine-induced itch. Chloroquine-induced scratching was reduced in mice in which TRPV1 was knocked down or pharmacologically inhibited. Both TRPV4 and TRPV1 were present in some sensory neurons. Pharmacological blockade of either TRPV4 or TRPV1 significantly attenuated the Ca(2+) response of sensory neurons exposed to histamine or chloroquine. Knockout of Trpv1 impaired Ca(2+) responses and reduced scratching behavior evoked by a TRPV4 agonist, whereas knockout of Trpv4 did not alter TRPV1-mediated capsaicin responses. Electrophysiological analysis of human embryonic kidney (HEK) 293 cells coexpressing TRPV4 and TRPV1 revealed that the presence of both channels enhanced the activation kinetics of TRPV4 but not of TRPV1. Biochemical and biophysical studies suggested a close proximity between TRPV4 and TRPV1 in dorsal root ganglion neurons and in cultured cells. Thus, our studies identified TRPV4 as a channel that contributes to both histamine- and chloroquine-induced itch and indicated that the function of TRPV4 in itch signaling involves TRPV1-mediated facilitation. TRP facilitation through the formation of heteromeric complexes could be a prevalent mechanism by which the vast array of somatosensory information is encoded in sensory neurons.


Subject(s)
Calcium Signaling , Ganglia, Spinal/metabolism , Pruritus/metabolism , Sensory Receptor Cells/metabolism , TRPV Cation Channels/metabolism , Animals , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Pruritus/genetics , TRPV Cation Channels/genetics
3.
Brain Behav Immun ; 50: 63-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26162710

ABSTRACT

Clinical usage of opioids in pain relief is dampened by analgesic tolerance after chronic exposure, which is related to opioid-associated neuroinflammation. In the current study, which is based on a chronic morphine tolerance rat model and sustained morphine treatment on primary neuron culture, it was observed that Akt phosphorylation, cleaved-Caspase-1-dependent NALP1 inflammasome activation and IL-1ß maturation in spinal cord neurons were significantly enhanced by morphine. Moreover, treatment with LY294002, a specific inhibitor of PI3k/Akt signaling, significantly reduced Caspase-1 cleavage, NALP1 inflammasome activation and attenuated morphine tolerance. Tail-flick tests demonstrated that pharmacological inhibition on Caspase-1 activation or antagonizing IL-1ß dramatically blocked the development of morphine tolerance. The administration of an exogenous analogue of lipoxin, Aspirin-triggered Lipoxin (ATL), caused a decline in Caspase-1 cleavage, inflammasome activation and mature IL-1ß production and thus attenuated the development of morphine tolerance by inhibiting upstream Akt phosphorylation. Additionally, treatment with DAMGO, a selective µ-opioid receptor peptide, significantly induced Akt phosphorylation, Caspase-1 cleavage and anti-nociception tolerance, all of which were attenuated by ATL treatment. Taken together, the present study revealed the involvement of spinal NALP1 inflammasome activation in the development of morphine tolerance and the role of the µ-receptor/PI3k-Akt signaling/NALP1 inflammasome cascade in this process. By inhibiting this signaling cascade, ATL blocked the development of morphine tolerance.


Subject(s)
Analgesics/administration & dosage , Drug Tolerance , Lipoxins/administration & dosage , Morphine/administration & dosage , Nociception/drug effects , Signal Transduction/drug effects , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Caspase 1/metabolism , Cells, Cultured , Chromones/pharmacology , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Male , Mice , Mice, Inbred C57BL , Morpholines/pharmacology , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Neurons/metabolism , Nociception/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/metabolism
4.
Article in English | MEDLINE | ID: mdl-26064176

ABSTRACT

Acupuncture or electroacupuncture (EA) has been demonstrated to have a powerful antihypernociceptive effect on inflammatory pain. The attenuation of G protein-coupled receptor kinase 2 (GRK2) in spinal cord and peripheral nociceptor has been widely acknowledged to promote the transition from acute to chronic pain and to facilitate the nociceptive progress. This study was designed to investigate the possible role of spinal GRK2 in EA antiallodynic in a rat model with complete Freund's adjuvant (CFA) induced inflammatory pain. EA was applied to ST36 ("Zusanli") and BL60 ("Kunlun") one day after CFA injection. Single EA treatment at day 1 after CFA injection remarkably alleviated CFA induced mechanical allodynia two hours after EA. Repeated EA displayed significant antiallodynic effect from 2nd EA treatment and a persistent effect was observed during the rest of treatments. However, downregulation of spinal GRK2 by intrathecal exposure of GRK2 antisense 30 mins after EA treatment completely eliminated both the transient and persistent antiallodynic effect by EA treatment. These pieces of data demonstrated that the spinal GRK2 played an important role in EA antiallodynia on inflammatory pain.

5.
Article in English | MEDLINE | ID: mdl-24795763

ABSTRACT

Growing evidence indicates that chronic neuropathic pain is frequently accompanied by an array of psychiatric diseases, such as depression and anxiety. Electroacupuncture (EA), as one therapy of traditional Chinese medicine, has displayed potent antidepressant-like effects in numerous clinical studies. The present study was designed to examine the possible effects of EA on the depressive and anxiety disorders induced by neuropathic pain. A classic rat model of neuropathic pain was produced by chronic constriction injury (CCI) of the sciatic nerve. EA was performed on acupoints "Bai-Hui" (GV20) and unilateral "Yang-Ling-Quan" (GB34). The antidepressive and anxiolytic effects of EA treatment were analyzed using the forced swimming test (FST) and the elevated plus maze (EPM) test, respectively. CCI resulted in remarkable depression- and anxiety-like behaviors, whereas the chronic EA treatment significantly improved the behavioral deficits of CCI rats. Moreover, the phosphorylation level of the NMDA receptor type 1 (NR1) subunit was decreased in the hippocampus of CCI rats. Intriguingly, continuous EA treatment effectively blocked this decrease in the levels of pNR1. These results suggested that EA has antidepressive and anxiolytic effects on rats with neuropathic pain and that this might be associated with restoring the phosphorylation of NR1 in the hippocampus.

6.
Neurosci Bull ; 29(6): 779-87, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23512739

ABSTRACT

The NLRP3 inflammasome, which consists of the NLRP3 (nucleotide-binding oligomerization domain (Nod)-like receptor 3) scaffold, the ASC (apoptosis-associated speck-like protein containing a CARD) adaptor and procaspase- 1, is assembled after the cytoplasmic LRRs (leucine-rich repeats) of NLRP3 sense pathogens or danger signals. The NLRP3 inflammasome controls the activation of the proteolytic enzyme caspase-1. Caspase-1 in turn regulates the maturation of the proinflammasome cytokines IL-1ß and IL-18, which leads to an inflammatory response. The inflammasome plays an important role in the development of Alzheimer's disease and bacterial meningitis, and the NLRP3 inflammasome may become a new target for the prevention and treatment of central nervous system diseases.


Subject(s)
Carrier Proteins/metabolism , Caspase 1/metabolism , Cytoskeletal Proteins/metabolism , Inflammasomes/metabolism , Alzheimer Disease/metabolism , Animals , CARD Signaling Adaptor Proteins , Central Nervous System/metabolism , Central Nervous System Infections/metabolism , Humans , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...