Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 14: 1230911, 2023.
Article in English | MEDLINE | ID: mdl-37519893

ABSTRACT

Introduction: Oxidative stress (OS)-related genes have been confirmed to be closely related to the prognosis of triple-negative breast cancer (TNBC) patients; despite this fact, there is still a lack of TNBC subtype strategies based on this gene guidance. Here, we aimed to explore OS-related subtypes and their prognostic value in TNBC. Methods: Data from The Cancer Genome Atlas (TCGA)-TNBC and Sequence Read Archive (SRA) (SRR8518252) databases were collected, removing batch effects using a combat method before analysis. Consensus clustering analysis identified two OS subtypes (clusters A and B), with cluster A showing a better prognosis. Immune infiltration characteristics were analyzed using ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) algorithms, revealing higher ImmuneScore and ESTIMATEscore in cluster A. Tumor-suppressive immune cells, human leukocyte antigen (HLA) genes, and three immune inhibitors were more prevalent in cluster A. Results: An eight-gene signature, derived from differentially expressed genes, was developed and validated as an independent risk factor for TNBC. A nomogram combining the risk score and clinical variables accurately predicted patient outcomes. Finally, we also validated the classification effect of subtypes using hub markers of each subtype in the test dataset. Conclusion: Our study reveals distinct molecular clusters based on OS-related genes to better clarify the reactive oxygen species (ROS)-mediated progression and the crosstalk between the ROS and tumor microenvironment (TME) in this heterogenetic disease, and construct a risk prognostic model which could provide more support for clinical treatment decisions.

2.
Talanta ; 253: 123601, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36126520

ABSTRACT

A novel photoelectrochemical (PEC) biosensor based on b-TiO2/CdS:Eu/Ti3C2 heterojunction was developed for ultrasensitive determination of miRNA-21. In this device, the b-TiO2/CdS:Eu/Ti3C2 heterojunction with excellent energy level arrangement effectively facilitated photoelectric conversion efficiency and accelerated the separation of the photogenerated electron hole pairs, which because that the structure of heterojunction overcomes the drawbacks of single material, such as narrow light absorption range, wide band gap, short carrier lifetime, etc., improves light utilization, extends the lifetime of photogenerated electron hole pairs, and promotes electron transfer. Herein, hairpin DNA1 (H1) decorated on the b-TiO2/CdS:Eu/Ti3C2 electrode surface by Cd-S bonds, after H2/miRNA-21 heterduplex was introduced, the strand-displacement reaction (SDR) was triggered between H1 and H2/miRNA-21, accordingly, miRNA-21 was discharged from the H2/miRNA-21 heterduplex, forming the H1/H2 duplex, and the reuse of miRNA-21 was realized. As a signal amplification factor, the signal amplification factor H3-CdSe was hybridized with H1/H2 duplex, which greatly enhanced the sensitivity of the PEC biosensor. Under optimal conditions, the designed PEC biosensor displayed outstanding sensitivity, selectivity and stability with a wide liner range from 1.0 µM to 10.0 fM and a low detection limit of 3.3 fM. The preparation of the optoelectronic material affords a new direction for the progress of heterojunction photovoltaic materials and the construction of the proposed biosensor also provides a new thought for the PEC detection of human miRNA-21 with superior performance. Simultaneously, the established biosensor exhibiting tremendous possibility for detecting other biomarkers and biomolecules in clinical diagnosis fields.


Subject(s)
Biosensing Techniques , MicroRNAs , Titanium , Humans , Electrodes , Photochemistry
3.
Biosens Bioelectron ; 165: 112416, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32729534

ABSTRACT

Herein, an ultra-sensitive photoelectrochemical biosensor based on Ti3C2:CdS nanocomposite was established for the selective detection of microRNA159c. Ti3C2:CdS nanocomposites were used as optoelectronic materials because Ti3C2:CdS interaction effectively separates photogenerated electrons and holes, and significantly improves the high photoelectric conversion efficiency. Firstly, Ti3C2:CdS nanocomposite was deposited on the surface of the fluorine-doped tin oxide (FTO) electrode. After the chitosan (CS) was dropped, the SH-miRNA were bonded on the electrode surface via the S-Cd bond. Then 6-mercaptohexanol (MCH) blocked the unbound site, the DNA strand was introduced to hybridize with the target SH-miRNA. At this time, the obtained photocurrent gradually decreases. Subsequently, the photosensitizer TMPyP as signal amplification was modified, the photocurrent increased significantly. The target SH-miRNA was detected based upon the photocurrent change originated from quantities change of TMPyP. Working under the best experimental conditions, the sensing platform had good stability, selectivity, and high sensitivity. The detection range for miRNA159c was 1.0 × 10-6-1.0 × 10-13 mol·L-l, and the detection limit was approximately 33 fmol·L-l. The detection of miRNA159c in human serum provided a huge opportunity to explore the relationship between the abundance of this miRNA and the incidence of breast cancer (BC), and to further achieve effective detection of BC.


Subject(s)
Biosensing Techniques , Breast Neoplasms , Cadmium Compounds , Nanocomposites , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Electrochemical Techniques , Humans , Limit of Detection , Titanium
4.
Nanoscale Res Lett ; 9(1): 549, 2014.
Article in English | MEDLINE | ID: mdl-25317102

ABSTRACT

Earth-abundant iron pyrite (FeS2) shows great potential as a light absorber for solar cells and photodetectors due to their high absorption coefficient (>10(5) cm(-1)). In this paper, high-quality phase-pure and single crystalline pyrite nanocrystals were synthesized via facile, low-cost, and environment friendly hydrothermal method. The molar ratio of sulphur to iron and the reaction time play a crucial role in determining the quality and morphology of FeS2 nanocrystals. X-ray diffraction and high-resolution transmission electron microscopy confirm that phase-pure and single crystalline pyrite nanocrystals can be synthesized with high sulphur to iron molar ratio and sufficient reaction time. For the first time, a crystalline nanogap pyrite photodetector with promising photocurrent and UV-visible photoresponse has been fabricated. This work further demonstrates a facile route to synthesize high-quality FeS2 nanomaterials and their potential in optoelectronic applications.

5.
Nano Lett ; 14(10): 6002-9, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25233036

ABSTRACT

Iron pyrite (FeS2) nanostructures are of considerable interest for photovoltaic applications due to improved material quality compared to their bulk counterpart. As an abundant and nontoxic semiconductor, FeS2 nanomaterials offer great opportunities for low-cost and green photovoltaic technology. This paper describes the fabrication of FeS2 nanowire arrays via sulfurization of iron oxide nanotubes at relatively low temperatures. A facile synthesis of ordered iron oxide nanotubes was achieved through anodization of iron foils. Characterization of the iron sulfide nanowires indicates that pyrite structures were formed. A prototype FeS2 nanowire photoconductor demonstrates very high responsivity (>3.0 A/W). The presented method can be further explored to fabricate various FeS2 nanostructures, such as nanoparticles, nanoflowers, and nanoplates.

SELECTION OF CITATIONS
SEARCH DETAIL
...