Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Gen Subj ; 1868(6): 130601, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522679

ABSTRACT

BACKGROUND: Aberrant protein localization is a prominent feature in many human diseases and can have detrimental effects on the function of specific tissues and organs. High-throughput technologies, which continue to advance with iterations of automated equipment and the development of bioinformatics, enable the acquisition of large-scale data that are more pattern-rich, allowing for the use of a wider range of methods to extract useful patterns and knowledge from them. METHODS: The proposed sc2promap (Spatial and Channel for SubCellular Protein Localization Mapping) model, designed to proficiently extract meaningful features from a vast repository of single-channel grayscale protein images for the purposes of protein localization analysis and clustering. Sc2promap incorporates a prediction head component enriched with supplementary protein annotations, along with the integration of a spatial-channel attention mechanism within the encoder to enables the generation of high-resolution protein localization maps that encapsulate the fundamental characteristics of cells, including elemental cellular localizations such as nuclear and non-nuclear domains. RESULTS: Qualitative and quantitative comparisons were conducted across internal and external clustering evaluation metrics, as well as various facets of the clustering results. The study also explored different components of the model. The research outcomes conclusively indicate that, in comparison to previous methods, Sc2promap exhibits superior performance. CONCLUSIONS: The amalgamation of the attention mechanism and prediction head components has led the model to excel in protein localization clustering and analysis tasks. GENERAL SIGNIFICANCE: The model effectively enhances the capability to extract features and knowledge from protein fluorescence images.


Subject(s)
Computational Biology , Humans , Computational Biology/methods , Proteins/metabolism , Cluster Analysis , Image Processing, Computer-Assisted/methods , Protein Transport , Algorithms
2.
J Imaging Inform Med ; 37(3): 1160-1176, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38326533

ABSTRACT

In intraoperative brain cancer procedures, real-time diagnosis is essential for ensuring safe and effective care. The prevailing workflow, which relies on histological staining with hematoxylin and eosin (H&E) for tissue processing, is resource-intensive, time-consuming, and requires considerable labor. Recently, an innovative approach combining stimulated Raman histology (SRH) and deep convolutional neural networks (CNN) has emerged, creating a new avenue for real-time cancer diagnosis during surgery. While this approach exhibits potential, there exists an opportunity for refinement in the domain of feature extraction. In this study, we employ coherent Raman scattering imaging method and a self-supervised deep learning model (VQVAE2) to enhance the speed of SRH image acquisition and feature representation, thereby enhancing the capability of automated real-time bedside diagnosis. Specifically, we propose the VQSRS network, which integrates vector quantization with a proxy task based on patch annotation for analysis of brain tumor subtypes. Training on images collected from the SRS microscopy system, our VQSRS demonstrates a significant speed enhancement over traditional techniques (e.g., 20-30 min). Comparative studies in dimensionality reduction clustering confirm the diagnostic capacity of VQSRS rivals that of CNN. By learning a hierarchical structure of recognizable histological features, VQSRS classifies major tissue pathological categories in brain tumors. Additionally, an external semantic segmentation method is applied for identifying tumor-infiltrated regions in SRH images. Collectively, these findings indicate that this automated real-time prediction technique holds the potential to streamline intraoperative cancer diagnosis, providing assistance to pathologists in simplifying the process.


Subject(s)
Brain Neoplasms , Deep Learning , Spectrum Analysis, Raman , Humans , Brain Neoplasms/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/diagnosis , Spectrum Analysis, Raman/methods , Neural Networks, Computer , Supervised Machine Learning
3.
Biomed Opt Express ; 15(1): 28-43, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38223183

ABSTRACT

This study presents the Fourier Decay Perception Generative Adversarial Network (FDP-GAN), an innovative approach dedicated to alleviating limitations in photoacoustic imaging stemming from restricted sensor availability and biological tissue heterogeneity. By integrating diverse photoacoustic data, FDP-GAN notably enhances image fidelity and reduces artifacts, particularly in scenarios of low sampling. Its demonstrated effectiveness highlights its potential for substantial contributions to clinical applications, marking a significant stride in addressing pertinent challenges within the realm of photoacoustic acquisition techniques.

4.
Exp Cell Res ; 433(2): 113807, 2023 12 15.
Article in English | MEDLINE | ID: mdl-37852350

ABSTRACT

Cellular biology research relies on microscopic imaging techniques for studying the complex structures and dynamic processes within cells. Fluorescence microscopy provides high sensitivity and subcellular resolution but has limitations such as photobleaching and sample preparation challenges. Transmission light microscopy offers a label-free alternative but lacks contrast for detailed interpretation. Deep learning methods have shown promise in analyzing cell images and extracting meaningful information. However, accurately learning and simulating diverse subcellular structures remain challenging. In this study, we propose a method named three-dimensional cell neural architecture search (3DCNAS) to predict subcellular structures of fluorescence using unlabeled transmitted light microscope images. By leveraging the automated search capability of differentiable neural architecture search (NAS), our method partially mitigates the issues of overfitting and underfitting caused by the distinct details of various subcellular structures. Furthermore, we apply our method to analyze cell dynamics in genome-edited human induced pluripotent stem cells during mitotic events. This allows us to study the functional roles of organelles and their involvement in cellular processes, contributing to a comprehensive understanding of cell biology and offering insights into disease pathogenesis.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Organelles , Microscopy, Fluorescence/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...