Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Cardiovasc Transl Res ; 16(5): 1032-1049, 2023 10.
Article in English | MEDLINE | ID: mdl-36947365

ABSTRACT

Angiogenesis occurred after myocardial infarction (MI) protects heart failure (HF). The aim of our study was to explore function of histone methyltransferase KMT2D (MLL4, mixed-lineage leukemia 4) in angiogenesis post-MI. Western blotting showed that KMT2D protein expression was elevated in MI mouse myocardial. Cardiomyocyte-specific Kmt2d-knockout (Kmt2d-cKO) mice were generated, and echocardiography and immunofluorescence staining detected significantly attenuated cardiac function and insufficient angiogenesis following MI in Kmt2d-cKO mice. Cross-talk assay suggested that Kmt2d-KO H9c2-derived conditioned medium attenuates EA.hy926 EC function. ELISA further identified that VEGF-A released from Kmt2d-KO H9c2 was significantly reduced. CUT&Tag and RT-qPCR revealed that KMT2D deficiency reduced Vegf-a mRNA expression and enrichment of H3K4me1 on the Vegf-a promoter. Moreover, KMT2D silencing in ECs also suppressed endothelial function. Our study indicates that KMT2D depletion in both cardiomyocytes and ECs attenuates angiogenesis and that loss of KMT2D exacerbates heart failure after MI in mice.


Subject(s)
Heart Failure , Myocardial Infarction , Animals , Mice , Heart Failure/genetics , Heart Failure/metabolism , Histone Methyltransferases/genetics , Histone Methyltransferases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice, Knockout , Myocytes, Cardiac/metabolism , Transcriptional Activation , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
2.
Front Cell Dev Biol ; 10: 946484, 2022.
Article in English | MEDLINE | ID: mdl-35938163

ABSTRACT

Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.

3.
Chin J Integr Med ; 26(8): 633-640, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32761339

ABSTRACT

Acupuncture has been widely used for treating diseases since the ancient days in China, but the mechanism by which acupuncture exerts such powerful roles is unclear. Epigenetics, including DNA methylation, histone modification, and post-transcriptional regulation of miRNAs, is the study of heritable changes in gene expression that do not include DNA sequence alterations. Epigenetics has become a new strategy for the basic and clinical research of acupuncture in the last decade. Some investigators have been trying to illustrate the mechanism of acupuncture from an epigenetics perspective, which has shed new lights on the mechanisms and applications of acupuncture. Moreover, the introduction of epigenetics into the regulatory mechanism in acupuncture treatment has provided more objective and scientific support for acupuncture theories and brought new opportunities for the improvement of acupuncture studies. In this paper, we reviewed the literatures that has demonstrated that acupuncture could directly or indirectly affect epigenetics, in order to highlight the progress of acupuncture studies correlated to epigenetic regulations. We do have to disclose that the current evidence in this review is not enough to cover all the complex interactions between multiple epigenetic modifications and their regulations. However, the up-to-date results can help us to better understand acupuncture's clinical applications and laboratory research.


Subject(s)
Acupuncture Therapy , Epigenomics/methods , Chromatin Assembly and Disassembly/physiology , DNA Methylation/physiology , Histone Code/physiology , Humans , MicroRNAs/physiology
4.
Sheng Li Xue Bao ; 71(4): 637-644, 2019 Aug 25.
Article in Chinese | MEDLINE | ID: mdl-31440761

ABSTRACT

Mixed linked leukemia 4 (MLL4) is a specific methyltransferase of histone 3 position lysine 4 (H3K4). It is also one of the important members of COMPASS/Set1-like protein complex. Both MLL4 protein itself and its mediated H3K4 methylation modification can cause changes in chromatin structure and function, thus regulating gene transcription and expression. With the studies of MLL4 protein in recent years, the roles of MLL4 gene, MLL4 protein and protein complex in the development of tissues and organs, tumor diseases and other physiological and pathophysiological processes have been gradually revealed. In this paper, the research progress of MLL4 gene, MLL4 protein characteristics, biological function and its effect on disease were reviewed, in order to further understand the effect of histone methyltransferase on gene expression regulation, as well as its non-enzyme dependent function. This paper may provide new ideas for the prevention, diagnosis and treatment of related diseases.


Subject(s)
DNA-Binding Proteins/physiology , Histone-Lysine N-Methyltransferase/physiology , Histones/chemistry , Humans , Methylation
5.
Neuron ; 99(4): 689-701.e5, 2018 08 22.
Article in English | MEDLINE | ID: mdl-30078577

ABSTRACT

To address the significance of enhancing myelination for functional recovery after white matter injury (WMI) in preterm infants, we characterized hypomyelination associated with chronic hypoxia and identified structural and functional deficits of excitatory cortical synapses with a prolonged motor deficit. We demonstrate that genetically delaying myelination phenocopies the synaptic and functional deficits observed in mice after hypoxia, suggesting that myelination may possibly facilitate excitatory presynaptic innervation. As a gain-of-function experiment, we specifically ablated the muscarinic receptor 1 (M1R), a negative regulator of oligodendrocyte differentiation in oligodendrocyte precursor cells. Genetically enhancing oligodendrocyte differentiation and myelination rescued the synaptic loss after chronic hypoxia and promoted functional recovery. As a proof of concept, drug-based myelination therapies also resulted in accelerated differentiation and myelination with functional recovery after chronic hypoxia. Together, our data indicate that myelination-enhancing strategies in preterm infants may represent a promising therapeutic approach for structural/functional recovery after hypoxic WMI.


Subject(s)
Hypoxia/metabolism , Myelin Sheath/physiology , Neurogenesis/physiology , Oligodendroglia/physiology , Recovery of Function/physiology , Synapses/physiology , Animals , Animals, Newborn , Chronic Disease , Female , Hypoxia/genetics , Hypoxia/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/chemistry , Myelin Sheath/pathology , Receptor, Muscarinic M1/deficiency , Synapses/chemistry , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...