Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2313152, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491731

ABSTRACT

Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.

2.
Mater Horiz ; 11(7): 1808-1816, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38323653

ABSTRACT

Accelerating the oxidation process at photoanode-electrolyte interfaces can prolong the lifetime of photoexcited electrons and improve the efficiency of photoelectrochemical cathodic protection (PECCP) systems without relying on hole scavengers. However, the systematic design of precisely structured heterostructures for efficient photoanodes remains challenging. Here we meticulously engineered a type-II heterostructure featuring precise spatial organization, wherein NiFe-layered double hydroxide nanosheets (NiFe-LDH NSs) were assembled onto annealed TiO2 nanorod arrays (ATNAs), demonstrating their effectiveness in achieving efficient PECCP. The interfacial electronic coupling and appropriate energy alignment between the NiFe-LDH NSs and ATNAs allowed rapid hole extraction from the ATNAs to the NiFe-LDH NSs. Furthermore, the uniform distribution of the NiFe-LDH NSs on top of ATNAs drastically reduced the overpotential of oxygen evolution reactions (OER) from 370 to 200 mV and Tafel slope from 162 to 56 mV dec-1, leading to significantly improved cathodic protection of 304 stainless steel (SS) under extended illumination and interesting post-illumination protection. In addition, with the increase of testing cycles, the as-prepared NiFe-LDH NSs@ATNAs demonstrated a progressively enhanced cathodic protection potential from 0.15 to 0.13 V vs. RHE over 50 cycles. These findings provide important guidelines for the design of future high-efficiency green metal protection through rational photoanode design.

3.
ACS Nano ; 18(8): 6202-6214, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38345913

ABSTRACT

The development of cost-effective electrocatalysts with an optimal surface affinity for intermediates is essential for sustainable hydrogen fuel production, but this remains insufficient. Here we synthesize Ni2P/MoS2-CoMo2S4@C heterometallic electrocatalysts based on the high-nuclearity cluster {Co24(TC4A)6(MoO4)8Cl6}, in which Ni2P nanoparticles were anchored to the surface of the MoS2-CoMo2S4@C nanosheets via strong interfacial interactions. Theoretical calculations revealed that the introduction of Ni2P phases induces significant disturbances in the surface electronic configuration of Ni2P/MoS2-CoMo2S4@C, resulting in more relaxed d-d orbital electron transfers between the metal atoms. Moreover, continuous electron transport was established by the formation of multiple heterojunction interfaces. The optimized Ni2P/MoS2-CoMo2S4@C electrocatalyst exhibited ultralow overpotentials of 198 and 73 mV for oxygen and hydrogen evolution reactions, respectively, in alkaline media, at 10 mA cm-2. The alkali electrolyzer constructed using Ni2P/MoS2-CoMo2S4@C required a cell voltage of only 1.45 V (10 mA cm-2) to drive overall water splitting with excellent long-term stability.

4.
ACS Nano ; 18(3): 2149-2161, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38190453

ABSTRACT

Molybdenum sulfide (MoS2) is a promising electrode material for supercapacitors; however, its limited Mo/S edge sites and intrinsic inert basal plane give rise to sluggish active electronic states, thus constraining its electrochemical performance. Here we propose a hierarchical confinement strategy to develop ethylene molecule (EG)-intercalated Co-doped sulfur-deficient MoS2 (Co-EG/SV-MoS2) for efficient and durable K-ion storage. Theoretical analyses suggest that the intercalation-confined EG and lattice-confined Co can enhance the interfacial K-ion storage capacity while reducing the K-ion diffusion barrier. Experimentally, the intercalated EG molecules with mildly reducing properties induced the creation of sulfur vacancies, expanded the interlayer spacing, regulated the 2H-1T phase transition, and strengthened the structural grafting between layers, thereby facilitating ion diffusion and ensuring structural durability. Moreover, the Co dopants occupying the initial Mo sites initiated charge transfer, thus activating the basal plane. Consequently, the optimized Co-EG/SV-MoS2 electrode exhibited a substantially improved electrochemical performance. Flexible supercapacitors assembled with Co-EG/SV-MoS2 delivered a notable areal energy density of 0.51 mW h cm-2 at 0.84 mW cm-2 with good flexibility. Furthermore, supercapacitor devices were integrated with a strain sensor to create a self-powered system capable of real-time detection of human joint motion.

5.
J Colloid Interface Sci ; 657: 463-471, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38070332

ABSTRACT

Air pollution has garnered significant worldwide attention; however, the existing air filtration materials still suffer from issues related to monotonous structure and the inherent trade-off between PM rejection and air permeability. Herein, a spider web-inspired composite membrane with continuous monolayer structured 2D nano-networks tightly welded on nanofibers in the electrospun membrane scaffold is designed via a hierarchical phase separation strategy. The resultant biomimetic hierarchical-structured membranes possess the integrated features of hierarchical multiscale structures of 2D ultrafine networks composed of nanowires with a diameter of 31 nm self-assembled by nanoparticles, exceptional characteristics involving small average aperture, extremely low network thickness, high porosity and promising pore channel connectivity, combined with rich surface polar functional groups (3.02D dipole moment). Consequently, the composite membrane exhibits a high PM0.3 capture efficiency of 99.6 % and low pressure drop of 58.8 Pa, less than 0.06 % of atmosphere pressure, with outstanding long-term PM2.5 recycling filtration performance. The hierarchical phase separation-driven 2D nano-networks construction strategy, by virtue of their feasibility and tunability, holds great promise for widespread application across diverse membrane-related domains for air filtration.

6.
ACS Nano ; 18(1): 28-66, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38117556

ABSTRACT

Covalent organic frameworks (COFs) have attracted considerable interest in the field of rechargeable batteries owing to their three-dimensional (3D) varied pore sizes, inerratic porous structures, abundant redox-active sites, and customizable structure-adjustable frameworks. In the context of metal-ion batteries, these materials play a vital role in electrode materials, effectively addressing critical issues such as low ionic conductivity, limited specific capacity, and unstable structural integrity. However, the electrochemical characteristics of the developed COFs still fall short of practical battery requirements due to inherent issues such as low electronic conductivity, the tradeoff between capacity and redox potential, and unfavorable micromorphology. This review provides a comprehensive overview of the recent advancements in the application of COFs, COF-based composites, and their derivatives in rechargeable metal-ion batteries, including lithium-ion, lithium-sulfur, sodium-ion, sodium-sulfur, potassium-ion, zinc-ion, and other multivalent metal-ion batteries. The operational mechanisms of COFs, COF-based composites, and their derivatives in rechargeable batteries are elucidated, along with the strategies implemented to enhance the electrochemical properties and broaden the range of their applications.

7.
Small ; : e2307848, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38054768

ABSTRACT

Reconfiguration of zinc anodes efficiently mitigates dendrite formation and undesirable side reactions, thus favoring the long-term cycling performance of aqueous zinc ion batteries (AZIBs). This study synthesizes a Zn@Bi alloy anode (Zn@Bi) using the fusion method, and find that the anode surfaces synthesized using this method have an extremely high percentage of Zn(002) crystalline surfaces. Experimental results indicate that the addition of bismuth inhibits the hydrogen evolution reaction and corrosion of zinc anodes. The finite-element simulation results indicate that Zn@Bi can effectively achieve a uniform anodic electric field, thereby regulating the homogeneous depositions of zinc ions and reducing the production of Zn dendrite. Theoretical calculations reveal that the incorporation of Bi favors the anode structure stabilization and higher adsorption energy of Zn@Bi corresponds to better Zn deposition kinetics. The Zn@Bi//Zn@Bi symmetric cell demonstrates an extended cycle life of 1000 h. Furthermore, when pairing Zn@Bi with an α-MnO2 cathode to construct a Zn@Bi//MnO2 cell, a specific capacity of 119.3 mAh g-1 is maintained even after 1700 cycles at 1.2 A g-1 . This study sheds light on the development of dendrite-free anodes for advanced AZIBs.

8.
ACS Nano ; 17(24): 25439-25448, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38071622

ABSTRACT

A low temperature environment poses significant challenges to the global economy and public health. However, the existing cold-protective materials still struggle with the trade-off between thickness and thermal resistance, resulting in poor thermal-wet comfort and limited personal cold protection performance. Here, a scalable strategy, based on electrospinning and solution casting, is developed to create aerogel micro/nanofiber membranes with a hierarchical cellular architecture by manipulating the phase separation of the charged jets and of the spreading casting solution. The integration of interconnected nanopores (30-60 nm), ultrafine fiber diameter, and high porosity, enables the aerogel micro/nanofiber membranes with lightweight, ultrathin thickness (∼0.5 mm), and superior warmth retention performance with ultralow thermal conductivity of 14.01 mW m-1 K-1. And the resultant membrane with customized semiclosed walls exhibits both striking wind resistance and satisfactory thermal-wet comfort (3.4 °C warmer than the cutting-edge thermal underwear). This work will inspire the design and development of high-performance fibrous materials for thermal management applications.

9.
ACS Nano ; 17(22): 23181-23193, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37956093

ABSTRACT

The violent side reactions of Zn metal in aqueous electrolyte lead to sharp local-pH fluctuations at the interface, which accelerate Zn anode breakdown; thus, the development of an optimization strategy to accommodate a wide pH range is particularly critical for improving aqueous Zn metal batteries. Herein, we report a pH-adaptive electric double layer (EDL) tuned by glycine (Gly) additive with pH-dependent ionization, which exhibits excellent capability to stabilize Zn anodes in wide-pH aqueous electrolytes. It is discovered that a Gly-ionic EDL facilitates the directed migration of charge carriers in both mildly acidic and alkaline electrolytes, leading to the successful suppression of local saturation. It is worth mentioning that the regulation effect of the additive concentration on the inner Helmholtz plane (IHP) structure of Zn electrodes is clarified in depth. It is revealed that the Gly additives without dimerization can develop orderly and dense vertical adsorption within the IHP to effectively reduce the EDL repulsive force of Zn2+ and isolate H2O from the anode surface. Consequently, they Zn anode with tunable EDL exhibits superior electrochemical performance in a wide range of pH and temperature, involving the prodigious cycle reversibility of 7000 h at Zn symmetric cells with ZnSO4-Gly electrolytes and an extended lifespan of 50 times in Zn symmetric cells with KOH-Gly electrolytes. Moreover, acidic Zn powder||MnO2 pouch cells, and alkaline high-voltage Zn||Ni0.8Co0.1Mn0.1O2 cells, and Zn||NiCo-LDH cells also deliver excellent cycling reversibility. The tunable EDL enables the ultrahigh depth of discharge (DOD) of 93%. This work elucidates the design of electrolyte additives compatible in a wide range of pH and temperature, which might cause inspiration in the fields of practical multiapplication scenarios for Zn anodes.

10.
J Am Chem Soc ; 145(44): 24218-24229, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37874900

ABSTRACT

Exploring efficient strategies to overcome the performance constraints of oxygen evolution reaction (OER) electrocatalysts is vital for electrocatalytic applications such as H2O splitting, CO2 reduction, N2 reduction, etc. Herein, tunable, wide-range strain engineering of spinel oxides, such as NiFe2O4, is proposed to enhance the OER activity. The lattice strain is regulated by interfacial thermal mismatch during the bonding process between thermally expanding NiFe2O4 nanoparticles and the nonexpanding carbon fiber substrate. The tensile lattice strain causes energy bands to flatten near the Fermi level, lowering eg orbital occupancy, effectively increasing the number of electronic states near the Fermi level, and reducing the pseudoenergy gap. Consequently, the energy barrier of the rate-determining step for strained NiFe2O4 is reduced, achieving a low overpotential of 180 mV at 10 mA/cm2. A total water decomposition voltage range of 1.52-1.56 V at 10 mA/cm2 (without iR correction) was achieved in an asymmetric alkaline electrolytic cell with strained NiFe2O4 nanoparticles, and its robust stability was verified with a voltage retention of approximately 99.4% after 100 h. Furthermore, the current work demonstrates the universality of tuning OER performance with other spinel ferrite systems, including cobalt, manganese, and zinc ferrites.

11.
Small ; 19(50): e2303884, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37625077

ABSTRACT

Metal-organic frameworks (MOFs) can be customized through modular assembly to achieve a wide range of potential applications, based on their desired functionality. However, most of the initially reported MOFs are limited to microporous systems and are not sufficiently stable, which restricts their popularization. Heterogeneity is introduced into a simple MOF framework to create MOF-based heterostructures with fascinating properties and interesting functions. Heterogeneity can be introduced into the MOFs via postsynthetic/ligand exchange. Although the ligand exchange has shown potential, it is difficult to precisely control the degree of exchange or position. Among the various synthesis strategies, hierarchical assembly is particularly attractive for constructing MOF-based heterostructures, as it can achieve precise regulation of MOF-based heterostructured nanostructures. The hierarchical assembly significantly expands the compositional diversity of MOF-based heterostructures, which has high elasticity for lattice matching during the epitaxial growth of MOFs. This review focuses on the synthetic evolution mechanism of hierarchical assemblies of MOF-based nanoarchitectures. Subsequently, the precise control of pore structure, pore size, and morphology of MOF-based nanoarchitectures by hierarchical assembly is emphasized. Finally, possible solutions to address the challenges associated with heterogeneous interfaces are presented, and potential opportunities for innovative applications are proposed.

12.
Mar Pollut Bull ; 194(Pt B): 115253, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37459765

ABSTRACT

The exploitation pattern of the invertebrate resource (Oratosquilla oratoria) was investigated in the coastal waters of the Shandong Peninsula, along with the seasonal variation in body length structure, spatial distribution in abundance, and interannual stock status. Results showed that the model with only catch data suggested both stocks in the north and south were suffering from extreme fishing pressure without explicit recovery (North: B2019/BMSY = 0.468 and F2019/FMSY = 1.88 in CMSY. South: B2019/BMSY = 0.349 and F2019/FMSY = 2.59 in CMSY). However, the other two assessment models indicated that the northern stock began to gradually recover as the fishing pressure dropped to an appropriate level after the original overfished status (North: B2019/BMSY = 0.738 and F2019/FMSY = 0.882 in AMSY, B2019/BMSY = 0.831 and F2019/FMSY = 0.774 in BSM. South: B2019/BMSY = 0.164 and F2019/FMSY = 1.44 in AMSY, B2019/BMSY = 0.384 and F2019/FMSY = 1.76 in BSM). Overall, the stock status in the north was better than that in the south. This study suggested that spatial exploitation pattern and quarterly differences should be considered in fishery management process.


Subject(s)
Crustacea , Fisheries , Animals
13.
Small ; 19(47): e2303963, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37488694

ABSTRACT

Aqueous Zn-ion batteries (AZIBs) attract intensive attention owing to their environmental friendliness, cost-effectiveness, innate safety, and high specific capacity. However, the practical applications of AZIBs are hindered by several adverse phenomena, including corrosion, Zn dendrites, and hydrogen evolution. Herein, a Zn anode decorated with a 3D porous-structured Na3 V2 (PO4)3 (NVP@Zn) is obtained, where the NVP reconstruct the electrolyte/anode interface. The resulting NVP@Zn anode can provide a large quantity of fast and stable channels, facilitating enhanced Zn ion deposition kinetics and regulating the Zn ions transport process through the ion confinement effect. The NASICON-type NVP protective layer promote the desolvation process due to its nanopore structure, thus effectively avoiding side reactions. Theoretical calculations indicate that the NVP@Zn electrode has a higher Zn ion binding energy and a higher migration barrier, which demonstrates that NVP protective layer can enhance Zn ion deposition kinetics and prevent the unfettered 2D diffusion of Zn ions. Therefore, the results show that NVP@Zn/MnO2 full cell can maintain a high specific discharge capacity of 168 mAh g-1 and a high-capacity retention rate of 74.6% after cycling. The extraordinary results obtained with this strategy have confirmed the promising applications of NVP in high-performance AZIBs.

14.
Small ; 19(45): e2304631, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37438544

ABSTRACT

Chemiluminescence immunoassay exhibits high sensitivity and signal-to-noise ratio, thus attracting great attention in the early diagnosis and dynamic monitoring of diseases. However, the collection of conventional flash-type chemiluminescence signal (<5 s) relies heavily on automatic sampling and reading instrument. Herein, a novel core-satellite multifunctional chemiluminescence immunosensor is designed for the efficient enrichment and highly sensitive determination of cancer biomarker carcinoembryonic antigen (CEA) with enhanced and long-lasting output signal that can be conveniently recorded by a simple microplate plate reading instrument. Anti-CEA monoclonal antibody 2 (Ab2) modified Fe3 O4 @SiO2 microspheres (Fe3 O4 @SiO2 -Ab2, 370 nm in diameter) are synthesized as the core for selectively capturing and enriching target CEA in solution, and anti-human CEA monoclonal antibody 1 (Ab1) and horseradish peroxidase (HRP) co-immobilized dendritic large-mesoporous silica nanospheres (MSNs-HRP/Ab1, 80 nm in diameter, pore size: 17 nm) are synthesized as the satellite for efficient immunological recognition and signal amplification. The as-designed core-satellite magnetic chemiluminescence immunosensors exhibit a broad linear range of 0.01-20 ng mL-1 and a low detection limit of 3.0 pg mL-1 for the convenient, highly specific, and sensitive determination of CEA in human serum. Such core-satellite chemiluminescence immunosensors are expected to act as a powerful tool for in vitro detection of various biomarkers, overcome the defect of conventional chemiluminescence relying heavily on expensive and bulky automatic instruments and popularize chemiluminescence analysis to primary medical institutions and remote areas.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Humans , Biomarkers, Tumor , Carcinoembryonic Antigen , Immunoassay , Luminescence , Silicon Dioxide , Antibodies, Monoclonal , Limit of Detection , Gold , Electrochemical Techniques
15.
Small ; 19(29): e2301675, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37170689

ABSTRACT

Precise configurations of isolated metal atoms in nitrogen-doped carbon materials with 2D single or multilayers and 3D nanoarchitectures are gaining attention owing to their good stability and activity at high current densities. Atomic metal-Nx moieties, which utilize maximum atoms to attain high intrinsic activity and novel electronic architecture of support materials, facilitate strong interaction between the central metal atom and support matrix. However, resource consumption is considerably high due to the inferior atomic utilization of active sites. Therefore, energy-efficient electrochemical processes are needed to develop advanced isolated single-atom architecture, which would provide high atom-utilization and good durability. Herein, the concepts of atomically dispersed metal sites in single-atom and alloy architectures and their electronic features associated with structural evolution are discussed. Opportunities and challenges associated with the use of isolated single-atoms in 2D materials are discussed based on their unique electronic defects, low-valence central metals, mechanical flexibility, and maximum access to metal sites. This insightful revisit into the engineering of single-atom and alloy architectures would provide a profound understanding of electronic modulations and regulation of geometric characteristics, and unravels potential directions for electrochemical energy conversion, charge storage, and sensing processes.

16.
Small ; 19(4): e2204275, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36403212

ABSTRACT

Artificial assembly of organic-inorganic heterostructures for electrochemical energy storage at the molecular level is promising, but remains a great challenge. Here, a covalently interlayer-confined organic (polyaniline [PANI])-inorganic (MoS2 ) hybrid with a dual charge-storage mechanism is developed for boosting the reaction kinetics of supercapacitors. Systematic characterizations reveal that PANI induces a partial phase transition from the 2H to 1T phases of MoS2 , expands the interlayer spacing of MoS2 , and increases the hydrophilicity. More in-depth insights from the synchrotron radiation-based X-ray technique illustrate that the covalent grafting of PANI to MoS2  induces the formation of MoN bonds and unsaturated Mo sites, leading to increased active sites. Theoretical analysis reveals that the covalent assembly facilitates cross-layer electron transfer and decreases the diffusion barrier of K+ ions, which favors reaction kinetics. The resultant hybrid material exhibits high specific capacitance and good rate capability. This design provides an effective strategy to develop organic-inorganic heterostructures for superior K-ion storage. The K-ion storage mechanism concerning the reversible insertion/extraction upon charge/discharge is revealed through ex situ X-ray photoelectron spectroscopy.

17.
Small ; 18(52): e2203147, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36323587

ABSTRACT

The exploration of electrocatalysts with high catalytic activity and long-term stability for electrochemical energy conversion is significant yet remains challenging. Zeolitic imidazolate framework (ZIF)-derived superstructures are a source of atomic-site-containing electrocatalysts. These atomic sites anchor the guest encapsulation and self-assembly of aspheric polyhedral particles produced using microreactor fabrication. This review provides an overview of ZIF-derived superstructures by highlighting some of the key structural types, such as open carbon cages, 1D superstructures, hollow structures, and the interconversion of superstructures. The fundamentals and representative structures are outlined to demonstrate the role of superstructures in the construction of materials with atomic sites, such as single- and dual-atom materials. Then, the roles of ZIF-derived single-atom sites for the electroreduction of CO2 and electrochemical synthesis of H2 O2 are discussed, and their electrochemical performance for energy conversion is outlined. Finally, the perspective on advancing single- and dual-atom electrode-based electrochemical processes with enhanced redox activity and a low-impedance charge-transfer pathway for cathodes is provided. The challenges associated with ZIF-derived superstructures for electrochemical energy conversion are discussed.

18.
Chem Sci ; 13(41): 11981-12015, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36349101

ABSTRACT

Metal-ion hybrid capacitors (MIHCs) hold particular promise for next-generation energy storage technologies, which bridge the gap between the high energy density of conventional batteries and the high power density and long lifespan of supercapacitors (SCs). However, the achieved electrochemical performance of available MIHCs is still far from practical requirements. This is primarily attributed to the mismatch in capacity and reaction kinetics between the cathode and anode. In this regard, metal-organic frameworks (MOFs) and their derivatives offer great opportunities for high-performance MIHCs due to their high specific surface area, high porosity, topological diversity, and designable functional sites. In this review, instead of simply enumerating, we critically summarize the recent progress of MOFs and their derivatives in MIHCs (Li, Na, K, and Zn), while emphasizing the relationship between the structure/composition and electrochemical performance. In addition, existing issues and some representative design strategies are highlighted to inspire breaking through existing limitations. Finally, a brief conclusion and outlook are presented, along with current challenges and future opportunities for MOFs and their derivatives in MIHCs.

20.
Ying Yong Sheng Tai Xue Bao ; 33(6): 1686-1692, 2022 Jun.
Article in Chinese | MEDLINE | ID: mdl-35729148

ABSTRACT

In recent years, a variety of important fishery resources in China's coastal waters have declined. Octopus ocellatus has the characteristics of short life cycle and rapid growth, with great contributions to fisheries of China's coastal waters. However, we know little about the habitat distribution characteristics of O. ocellatus and its relationship with environmental factors, which is not conducive to better protection and utilization of its resources. Here, we analyzed the distribution characteristics of O. ocellatus and its relationship with environmental factors using three machine learning methods, i.e., random forest model, artificial neural network model, and generalized boosted regression models, based on the survey data of fishery resources and habitat in Haizhou Bay during spring of 2011 and 2013-2017. Among the three models, random forest model had great advantages in the fitting effect and prediction ability. The model analysis results showed that sea bottom temperature, seawater depth and sea bottom salinity had significant effects on the habitat distribution of O. ocellatus. The relative resource density of O. octopus increased first and then decreased with the increases of sea bottom temperature, seawater depth, and sea bottom salinity. Based on environmental data simulated by the FVCOM model, we predicted the habitat distribution of O. ocellatus in Haizhou Bay using random forest model and found that O. ocellatus was mainly distributed in the area between 34.5°-35.8° N and 119.7°-121° E.


Subject(s)
Octopodiformes , Animals , Bays , China , Ecosystem , Fisheries , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...