Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 63(38): e202407952, 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-38923770

ABSTRACT

Diketopiperazine (DKP) derived cyclic amidine structures widely exist in peptide natural products according to the genome mining result. The largely unknown bioactivity and mode of action are partially caused by the poor availability of the compounds via microbiological and chemical approaches. To tackle this challenge, in this work, we have developed the on-resin ring-closing amidine formation strategy to synthesize peptides containing N-terminal DKP derived cyclic amidine structure, in which the 6-exo-trig cyclization mediated by HgCl2 activation of thioamides was the key step. Leveraging from this new strategy, we finished the total syntheses of streptamidine and klebsazolicin. Meanwhile, eleven klebsazolicin analogues were synthesized for its structure-activity relationship study.


Subject(s)
Amidines , Amidines/chemistry , Amidines/chemical synthesis , Cyclization , Biomimetics , Structure-Activity Relationship , Molecular Structure , Diketopiperazines/chemistry , Diketopiperazines/chemical synthesis , Biomimetic Materials/chemistry , Biomimetic Materials/chemical synthesis
2.
Sci Adv ; 6(9): eaay8541, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32158946

ABSTRACT

The electronic structure of bilayer graphene can be altered by creating defects in its carbon skeleton. However, the natural defects are generally heterogeneous. On the other hand, rational bottom-up synthesis offers the possibility of building well-defined molecular cutout of defect-containing bilayer graphene, which allows defect-induced modulation with atomic precision. Here, we report the construction of a molecular defect-containing bilayer graphene (MDBG) with an inner cavity by organic synthesis. Single-crystal x-ray diffraction, mass spectrometry, and nuclear magnetic resonance spectroscopy unambiguously characterize the structure of MDBG. Compared with its same-sized, defect-free counterpart, the MDBG exhibits a notable blue shift of optical absorption and emission, as well as a 9.6-fold brightening of its photoluminescence, which demonstrates that a single defect can markedly alter the optical properties of bilayer graphene.

3.
Nat Commun ; 10(1): 3057, 2019 Jul 11.
Article in English | MEDLINE | ID: mdl-31296875

ABSTRACT

Bilayer graphene consists of two stacked graphene layers bound together by van der Waals interaction. As the molecular analog of bilayer graphene, molecular bilayer graphene (MBLG) can offer useful insights into the structural and functional properties of bilayer graphene. However, synthesis of MBLG, which requires discrete assembly of two graphene fragments, has proved to be challenging. Here, we show the synthesis and characterization of two structurally well-defined MBLGs, both consisting of two π-π stacked nanographene sheets. We find they have excellent stability against variation of concentration, temperature and solvents. The MBLGs show sharp absorption and emission peaks, and further time-resolved spectroscopic studies reveal drastically different lifetimes for the bright and dark Davydov states in these MBLGs.

4.
Angew Chem Int Ed Engl ; 58(38): 13276-13279, 2019 Sep 16.
Article in English | MEDLINE | ID: mdl-31325206

ABSTRACT

Bowl inversion is a unique property of buckybowls. The polarity and assembly configuration of buckybowls are reversed after bowl inversion. So far, this unique phenomenon has been studied in solution and on surface, but not in solid state due to spatial constraint. Now a series of exo-type supramolecular assemblies of trithiasumanene and nanographene are investigated. Tuning the electron density of the nanogaphene component was found to directly affect the binding constant of the complex. Reversible bowl inversion in the solid state was then successfully achieved by subjecting the trithiasumanene-nanographene assembly with the weakest binding strength to repeated heating-cooling cycles, which was unambiguously observed by single crystal X-ray diffraction.

5.
Mol Pharmacol ; 74(5): 1333-44, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18723823

ABSTRACT

K(ATP) channels are metabolic sensors and targets of potassium channel openers (KCO; e.g., diazoxide and pinacidil). They comprise four sulfonylurea receptors (SUR) and four potassium channel subunits (Kir6) and are critical in regulating insulin secretion. Different SUR subtypes (SUR1, SUR2A, SUR2B) largely determine the metabolic sensitivities and the pharmacological profiles of K(ATP) channels. SUR1- but not SUR2-containing channels are highly sensitive to metabolic inhibition and diazoxide, whereas SUR2 channels are sensitive to pinacidil. It is generally believed that SUR1 and SUR2 are incompatible in channel coassembly. We used triple tandems, T1 and T2, each containing one SUR (SUR1 or SUR2A) and two Kir6.2Delta26 (last 26 residues are deleted) to examine the coassembly of different SUR. When T1 or T2 was expressed in Xenopus laevis oocytes, small whole-cell currents were activated by metabolic inhibition (induced by azide) plus a KCO (diazoxide for T1, pinacidil for T2). When coexpressed with any SUR subtype, the activated-currents were increased by 2- to 13-fold, indicating that different SUR can coassemble. Consistent with this, heteromeric SUR1+SUR2A channels were sensitive to azide, diazoxide, and pinacidil, and their single-channel burst duration was 2-fold longer than that of the T1 channels. Furthermore, SUR2A was coprecipitated with SUR1. Using whole-cell recording and immunostaining, heteromeric channels could also be detected when T1 and SUR2A were coexpressed in mammalian cells. Finally, the response of the SUR1+SUR2A channels to azide was found to be intermediate to those of the homomeric channels. Therefore, different SUR subtypes can coassemble into K(ATP) channels with distinct metabolic sensitivities and pharmacological profiles.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Potassium Channels, Inwardly Rectifying/metabolism , Receptors, Drug/metabolism , Animals , Blotting, Western , Cell Line , Chlorocebus aethiops , Humans , Immunohistochemistry , Immunoprecipitation , Patch-Clamp Techniques , Potassium Channels, Inwardly Rectifying/classification , Sulfonylurea Receptors , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL