Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Foods ; 13(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38254496

ABSTRACT

Polysaccharides from Ficus carica L. (FCP) exert multiple biological activities. As a biological macromolecule, the available knowledge about the specific structures and mechanisms of the biological activity of purified 'Brunswick' fig polysaccharides is currently limited. In the present study, chemical purification and characteristics were identified via chemical and instrumental analysis, and then the impact of FCP on immunomodulation activity in vitro and in vivo was examined. Structural characteristics showed that the molecular weight of the FCP sample was determined to be 127.5 kDa; the primary monosaccharides present in the FCP sample were galacturonic acid (GalA), arabinose (Ara), galactose (Gal), rhamnose (Rha), glucose (Glc), and xylose (Xyl) at a ratio of 0.321:0.287:0.269:0.091:0.013:0.011. Based on the investigation of in vitro immunomodulatory activity, FCP was found to stimulate the production of NO, TNF-α, and IL-6, and increased the pinocytic activity of macrophages. Further analysis revealed that FCP activated macrophages by interacting with Toll-like receptor 4 (TLR4). Moreover, the in vivo test results indicate that FCP showed a significant increase in serum pro-inflammatory factors in immunosuppressed mice. Overall, this study suggests that FCP has the potential to be utilized as a novel immunomodulator in the pharmaceutical and functional food industries.

2.
Food Chem X ; 19: 100855, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780254

ABSTRACT

The aim is to upgrade the formulation to produce wheat bread with lower starch digestibility by supplemented with Qingke flour. Physiochemical properties of multi-scale Qingke flours were examined to select the most satisfied Qingke flour for breadmaking. Data showed multi-scale Qingke samples differed in total starch content, water/oil binding capacity, freeze-thaw stability, but had similar swelling capacity and thermodynamic properties. Addition of Qingke flours significantly reduced the total in vitro starch digestion of bread from 80% to 41% and decreased the rapidly digested starch content from 53% to 27%. However, Qingke flours caused a worse bread quality, texture and sensory e.g. lower bread specific volume (4.26-3.3 mL/g), larger hardness (398-1170 g) and chewiness (296-707 mJ). Meanwhile, hydroxypropyl methylcellulose, sodium stearoyl lactylate and transglutaminase could improve the bread quality and sensory. Lastly, results revealed Qingke-supplemented bread could generate new volatile compounds, hence having a different aroma compared to original wheat bread.

3.
Food Res Int ; 173(Pt 1): 113232, 2023 11.
Article in English | MEDLINE | ID: mdl-37803547

ABSTRACT

In microbial studies of low-moisture foods (LMFs, water activity less than 0.85), freeze-dried bacteria benefit us to inoculate LMFs without introducing extra water or altering food physiochemical properties. However, the freeze-drying process would bring unavoidable damage to bacterial cells and results in less-resistant inoculum that are unlikely to be qualified in microbial studies. Herein, we enhanced bacterial heat tolerance by subjecting the cells to mild heat (42-50 °C) to counteract the reduced heat tolerance and survivability of freeze-dried bacteria. Enterococcus faecium NRRL B-2354 (E. faecium), a Salmonella surrogate in LMFs, was used as the target microorganism because it was widely accepted in microbial validation of thermal pasteurizing LMFs. Three types of LMFs (peanut powder, protein powder, and onion powder) were used as LMFs models to validate the freeze-dried E. faecium in comparison with Salmonella enterica Enteritidis PT 30 (S. Enteritidis) prepared by the traditional aqueous method. The heat tolerance (D65℃ value) of E. faecium increased at all treatments and peaked (+31.48 ± 0.13%) at temperature-time combinations of 45 °C-60 min and 50 °C-5 min. Survivability of freeze-dried inoculum and its heat tolerance retained well within 50 d storage. The freeze-dried E. faecium was prepared in this study brought equal or higher heat tolerance (D85℃ or D75℃) than S. Enteritidis in tested LMFs models. For instance, the D85℃ of freeze-dried E. faecium (heat-treated at 50 °C for 5 min) and S. Enteritidis in whole egg powder are 35.56 ± 1.52 min and 28.41 ± 0.41 min, respectively. The freeze-dried E. faecium with enhanced heat tolerance appears to be a suitable Salmonella surrogate for dry-inoculating LMFs. Our protocol also enables industry-scale production of freeze-dried inoculum by broth-cultivation method combined with mild-heat treatment.


Subject(s)
Enterococcus faecium , Thermotolerance , Food Microbiology , Powders , Colony Count, Microbial , Salmonella enteritidis , Water/analysis
4.
J Glob Antimicrob Resist ; 35: 216-222, 2023 12.
Article in English | MEDLINE | ID: mdl-37797810

ABSTRACT

OBJECTIVES: The study aimed to characterize the quinolone resistance of Salmonella enterica serovar Typhimurium and its monophasic variant (Salmonella enterica serovar 1,4,[5],12:i:-) isolated from food and patients in China. METHODS: All of the isolates were assessed for quinolone susceptibility via the broth microdilution method. Then, the isolates were checked for mutations within quinolone resistance-determining regions of gyrA, gyrB, parC, and parE and were examined for plasmid-mediated quinolone resistance genes. RESULTS: High rates of resistance to nalidixic acid in the S. Typhimurium (70.7%) and S. 1,4,[5],12:i:- (41.9%) isolates were observed, and a considerable proportion of isolates with reduced susceptibility to ciprofloxacin and levofloxacin were also detected. The high frequency of mutations in GyrA (60.8%) and a variety of genes (aac[6']-Ib-cr [23.2%], oqxAB [19.2%], qnrS [13.6%], and qnrA [3.2%]) conferring quinolone resistance in these Salmonella isolates were noteworthy. Lastly, the isolates carrying qnrS for transferability and transmission of the quinolone resistance were analysed by conjugation. Multiple locus variable-number tandem repeat analysis profiles indicated that some qnrS-positive isolates were clonally related, whilst the other isolates were genetically divergent. This suggested that both clonal spread of resistant strains and horizontal transmission of the plasmid-mediated resistance genes contributed to the dissemination of qnrS-positive Salmonella isolates. CONCLUSION: This study highlights the prevalence of quinolone-resistant S. Typhimurium and S. 1,4,[5],12:i:- in China, posing a threat to public health.


Subject(s)
Quinolones , Salmonella enterica , Humans , Quinolones/pharmacology , Salmonella typhimurium/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Serogroup , Salmonella enterica/genetics
5.
Food Microbiol ; 115: 104323, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567618

ABSTRACT

Lawn-harvest method uses a solid medium (e.g., tryptic soy agar, TSA) to produce bacterial lawns and is widely accepted for the culture of microorganisms in microbial studies of low-moisture foods (LMFs, foods with water activity less than 0.85). It produces desiccation-tolerant cells with higher D-values in LMFs; however, little is known about the molecular mechanisms underlying bacterial resistance. Salmonella enterica Enteritidis PT 30 (S. Enteritidis), the most pertinent pathogen in LMFs, was cultured in TSA and tryptic soy broth (TSB). Cells were harvested and inoculated on filter papers to assess their performance under a relative humidity of 32 ± 2%. Transcriptome analysis of cultured cells during long-term desiccation (24, 72, and 168 h) was conducted in TruSeq PE Cluster Kit (Illumina) by paired-end methods. Lawn-cultured S. Enteritidis cells have stronger survivability (only decreased by 0.78 ± 0.12 log after 130 d of storage) and heat tolerance (higher D/ß value) than those from the broth method. More desiccation genes of lawn-cultured cells were significantly upregulated from growth to long-term desiccation. Differentially expressed genes were the most enriched in the ribosome and sulfur metabolism pathways in the lawn- and broth-cultured groups. This study tracked the transcriptomic differences between two cultured groups in response to long-term desiccation stress and revealed some molecular mechanisms underlying their different suitability in microbial studies of LMFs.


Subject(s)
Salmonella enterica , Salmonella enteritidis , Salmonella enteritidis/genetics , Desiccation , Food Microbiology , Salmonella enterica/genetics , Gene Expression Profiling
6.
Food Chem ; 423: 136316, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37207514

ABSTRACT

Nutmeg essential oil (NEO) is a natural condimentwith versatile biological activities. However, the application of NEO in food has several limitations due to its poor stability and low aqueous solubility. To overcome the shortcomings, this paper focused on the preparation of the inclusion complex (IC) of NEO with 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) by the coprecipitation method. The optimal condition was inclusion temperature 36 ℃, time 247 min, stirring speed 520 r/min, and wall-core ratio 12:1, resulting in a recovery of 80.63%. The formation of IC was verified by various methods such as scanning electron microscopy, Fourier transform infrared spectroscopy and nuclear magnetic resonance. The improvement of thermal stability, antioxidant, and nitrite scavenging activities of NEO after encapsulation was proven. Moreover, the controlled release of NEO from IC can be implemented by regulating the temperature and relative humidity. Overall, NEO/HP-ß-CD IC has great application potential in food industries.


Subject(s)
Myristica , Oils, Volatile , 2-Hydroxypropyl-beta-cyclodextrin/chemistry , Antioxidants/chemistry , Spectroscopy, Fourier Transform Infrared , Solubility , Calorimetry, Differential Scanning
7.
Food Microbiol ; 113: 104275, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37098433

ABSTRACT

The oil in low-moisture foods (LMFs) shows protective effects on bacteria during thermal processing. However, the circumstances under which this protective effect strengthens remain unclear. This study aimed to understand which step of the oil exposure to bacterial cells (inoculation, isothermal inactivation, or recovery and enumeration step) in LMFs can enhance their heat resistance. Peanut flour (PF) and defatted PF (DPF) were selected as the oil-rich and oil-free LMF models. Salmonella enterica Enteritidis Phage Type 30 (S. Enteritidis) was inoculated into four designated PF groups representing different oil exposure stages. It was isothermally treated to obtain heat resistance parameters. At a constant moisture content (aw,25°C = 0.32 ± 0.02) and controlled aw,85°C (0.32 ± 0.02), S. Enteritidis exhibited significantly high (p < 0.05) D values in oil-rich sample groups. For instance, the heat resistance values of S. Enteritidis in the PF-DPF and DPF-PF groups were D80°C of 138.22 ± 7.45 min and 101.89 ± 7.82 min; however, the D80°C in the DPF-DPF group was 34.54 ± 2.07 min. The oil addition after the thermal treatment also helped injured bacterial recovery in the enumeration. For instance, the D80°C, D85°C, and D90°C values in the DFF-DPF oil groups were 36.86 ± 2.30, 20.65 ± 1.23, and 7.91 ± 0.52 min, respectively, which were higher than those in the DPF-DPF group at 34.54 ± 2.07, 17.87 ± 0.78, and 7.10 ± 0.52 min. We confirmed that the oil protected S. Enteritidis in PF in all three stages: desiccation process, heat treatment, and recovery of bacterial cells in plates.


Subject(s)
Bacteriophages , Salmonella enteritidis , Hot Temperature , Arachis , Flour/microbiology , Food Microbiology , Water/analysis , Colony Count, Microbial
8.
Food Res Int ; 167: 112636, 2023 05.
Article in English | MEDLINE | ID: mdl-37087231

ABSTRACT

In this study, we compared the heat tolerance parameter (D65℃) values of Salmonella enterica serovar Enteritidis PT 30 (S. Enteritidis ) heat adapted at different degrees (at 42 ℃ for 20-180 min) and cultivated using two methods. The treated group with the highest D65℃ value (LP-42 ℃-60 min) and the untreated groups (Control-TSB and Control-TSA) were subjected to transcriptome analysis. Heat-adaptation increased the D65℃ values of S. Enteritidis by 24.5-60.8%. The D65℃ values of the LP-42 ℃-60 min group (1.85 ± 0.13 min, 7.7% higher) was comparable to that of the Control-TSA. A total of 483 up- and 443 downregulated genes of S. enteritidis were identified in the LP-42 ℃-60 min group (log2fold change > 1, adjusted p-value < 0.05). Among these genes, 5 co-expressed and 15 differentially expressed genes in the LP-42 ℃-60 min and Control-TSA grops possibly contributed to the high D65℃ values of S. Enteritidis . The Rpo regulon was involved in the heat adaptation of S. Enteritidis , as evidenced by the significant upregulation of rpoS, rpoN, and rpoE. KEGG enrichment pathways, such as biosynthesis of secondary metabolites, tricarboxylic acid, and ribosomes were identified and mapped to reveal the molecular mechanisms of S. enteritidis during heat adaptation. This study quantified the enhanced heat tolerance of S. Enteritidis heat adapted at different degrees of heat-adaptation. The results of this study may serve as a basis for elucidating the molecular mechanisms underlying the enhanced heat tolerance at the transcriptome level.


Subject(s)
Salmonella enterica , Thermotolerance , Salmonella enteritidis/genetics , Salmonella enterica/genetics , Thermotolerance/genetics , Hot Temperature , Gene Expression Profiling
9.
Antioxidants (Basel) ; 12(2)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36829989

ABSTRACT

The effects of limited hydrolysis following glycosylation with dextran on the structural properties and antioxidant activity of the soybean protein isolate (SPI) were investigated. Three SPI hydrolysate (SPIH) fractions, F30 (>30 kDa), F30-10 (10-30 kDa), and F10 (<10 kDa), were confirmed using gel permeation chromatography. The results demonstrated that the glycosylation of F30 was faster than that of F30-10 or F10. The enzymolysis caused the unfolding of the SPI to expose the internal hydrophobic cores, which was further promoted by the grafting of dextran, making the obtained conjugates have a loose spatial structure, strong molecular flexibility, and enhanced thermal stability. The grafting of dextran significantly enhanced the DPPH radical or •OH scavenging activity and the ferrous reducing power of the SPI or SPIH fractions with different change profiles due to their different molecular structures. The limited enzymolysis following glycosylation was proven to be a promising way to obtain SPI-based food ingredients with enhanced functionalities.

10.
Crit Rev Food Sci Nutr ; 63(21): 5306-5321, 2023.
Article in English | MEDLINE | ID: mdl-34927484

ABSTRACT

Outbreaks associated with low-moisture foods (e.g., wheat flour, nuts, and cereals) have urged the development of novel technologies and re-validation of legacy pasteurization process. For various thermal pasteurization processes, they share same scientific facts (e.g., bacterial heat resistance increased at reduced water activity) and guidelines. However, they also face specific challenges because of their different heat transfer mechanisms, processing conditions, or associated low-moisture foods' formulations. In this article, we first introduced the general structural for validating a thermal process and the shared basic information that would support our understanding of the key elements of each thermal process. Then, we reviewed the current progress of validation studies of 7 individual heating technologies (drying roasting, radiofrequency-assisted pasteurization, superheated steam, etc.) and the combined treatments (e.g., infrared and hot air). Last, we discussed knowledge gaps that require more scientific data in the future studies. We aimed to provide a process-centric view point of thermal pasteurization studies of low-moisture foods. The information could provide detailed protocol for process developers, operators, and managers to enhance low-moisture foods safety.


Subject(s)
Flour , Pasteurization , Pasteurization/methods , Flour/analysis , Food Microbiology , Salmonella , Triticum , Hot Temperature , Colony Count, Microbial
11.
Front Microbiol ; 13: 981807, 2022.
Article in English | MEDLINE | ID: mdl-36187974

ABSTRACT

Sour bamboo shoot is a traditional Chinese fermented vegetable food. The traditional pickling method of sour bamboo shoots has the disadvantages of being time-consuming, inhomogeneous, and difficult to control. Pulsed vacuum pressure pickling (PVPP) technology uses pulsed vacuum pressure to enhance the pickling efficiency significantly. To demonstrate the effects of salt content and PVPP technical parameters on the fermentation of bamboo shoots, the sample salinity, pH value, color, crunchiness and chewiness, nitrite content, and lactic acid bacteria content during the pickling process were investigated. The salt content inside the bamboo shoots gradually increased to the equilibrium point during the pickling process. The pickling efficiency of bamboo shoots under PVPP technology increased by 34.1% compared to the traditional control groups. Meanwhile, the uniform salt distribution under PVPP technology also obtained better performance in comparison with the traditional groups. The pH value declined slowly from 5.96 to 3.70 with the extension of pickling time and sour flavor accumulated progressively. No significant differences were found in the color values (L *, a *, and b *) and the crunchiness of the bamboo shoot under different salt solution concentrations, vacuum pressure, and pulsation frequency ratio conditions. Colony-forming unit of lactic acid bacteria (CFU of LAB) decreased, to begin with, and then increased until the 6th day, followed by a declining trend in volatility. The nitrate content of bamboo shoots samples under PVPP treatments did not exceed the safety standard (<20 mg/kg) during the whole fermentation process, which proves the safety of PVPP technology. In conclusion, PVPP technology can safely replace the traditional method with better quality performance. The optimal PVPP processing conditions (vacuum pressure 60 kPa, 10 min vacuum pressure time vs. 4 min atmospheric pressure time, salt solution concentration 6%) have been recommended for pickling bamboo shoots with high product quality.

12.
Nutrients ; 14(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36145117

ABSTRACT

Cancer has become a major challenge in the global disease burden. Artificial sweeteners are a class of chemical compounds that are used as food and beverage addition agent to replace sugar. However, the health effects of consuming artificial sweeteners are still unclear. This meta-analysis was performed to evaluate the role of artificial sweeteners on cancer. The databases PubMed, Cochrane Library, MEDLINE, Web of Science and EMBASE were searched up until July 2022. A Newcastle−Ottawa scale (NOS) was used to estimate the study quality. A total of 25 observational studies were included with a total of 3,739,775 subjects. The intake of artificial sweeteners had no apparent association with overall cancer incidence and mortality. However, in Europe, artificial sweeteners' intake could increase the risk of cancer incidence (HR/RR = 1.07, 95% CI = [1.02, 1.12], I2 = 25.8%, P = 0.223), which appears to be related to a shift in nutritional behaviors in the countries. Significant results were also observed in subgroups with aspartame and a mixed intake of artificial sweeteners. Moreover, higher risk was observed for artificial sweeteners intake in all-cause mortality (HR/RR =1.13, 95% CI = [1.03, 1.25], I2 = 79.7%, p < 0.001) and a J-shaped association between them was found. More data from well-conducted studies and clinical trials are required.


Subject(s)
Neoplasms , Sweetening Agents , Aspartame/adverse effects , Humans , Incidence , Neoplasms/epidemiology , Prospective Studies , Sugars , Sweetening Agents/adverse effects
13.
J Food Prot ; 85(11): 1538-1552, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35723555

ABSTRACT

ABSTRACT: This multi-institutional study assessed the efficacy of Enterococcus faecium NRRL B-2354 as a nonpathogenic Salmonella surrogate for thermal processing of nonfat dry milk powder, peanut butter, almond meal, wheat flour, ground black pepper, and date paste. Each product was analyzed by two laboratories (five independent laboratories total), with the lead laboratory inoculating (E. faecium or a five-strain Salmonella enterica serovar cocktail of Agona, Reading, Tennessee, Mbandaka, and Montevideo) and equilibrating the product to the target water activity before shipping. Both laboratories subjected samples to three isothermal treatments (between 65 and 100°C). A log-linear and Bigelow model was fit to survivor data via one-step regression. On the basis of D80°C values estimated from the combined model, E. faecium was more thermally resistant (P < 0.05) than Salmonella in nonfat dry milk powder (DEf-80°C, 100.2 ± 5.8 min; DSal-80°C, 28.9 ± 1.0 min), peanut butter (DEf-80°C, 133.5 ± 3.1 min; DSal-80°C, 57.6 ± 1.5 min), almond meal (DEf-80°C, 34.2 ± 0.4 min; DSal-80°C, 26.1 ± 0.2 min), ground black pepper (DEf-80°C, 3.2 ± 0.8 min; DSal-80°C, 1.5 ± 0.1 min), and date paste (DEf-80°C, 1.5 ± 0.0 min; DSal-80°C, 0.5 ± 0.0 min). Although the combined laboratory D80°C for E. faecium was lower (P < 0.05) than for Salmonella in wheat flour (DEf-80°C, 9.4 ± 0.1 min; DSal-80°C, 10.1 ± 0.2 min), the difference was ∼7%. The zT values for Salmonella in all products and for E. faecium in milk powder, almond meal, and date paste were not different (P > 0.05) between laboratories. Therefore, this study demonstrated the impact of standardized methodologies on repeatability of microbial inactivation results. Overall, E. faecium NRRL B-2354 was more thermally resistant than Salmonella, which provides support for utilizing E. faecium as a surrogate for validating thermal processing of multiple low-moisture products. However, product composition should always be considered before making that decision.


Subject(s)
Enterococcus faecium , Prunus dulcis , Colony Count, Microbial , Flour , Food Handling/methods , Food Microbiology , Hot Temperature , Powders , Salmonella/physiology , Triticum , Water/analysis
14.
Food Chem X ; 14: 100329, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35601211

ABSTRACT

This study investigated the combined effects of calcium lactate (CA-L, 3 g L-1) and shortwave ultraviolet (UV-C, 4.0 kJ m-2) irradiation on quality attributes and antioxidant defense capacity of fresh-cut kiwifruits at refrigerated storage for 7 d. The results indicated that CA-L and UV-C joint treatment, compared to either treatment alone, alleviated microbial load, showed higher quality on ascorbic acid (AsA), green color, total chlorophyll, flesh hardness, total sugar, total acid and malonaldehyde (MDA) content. Besides, it inhibited O 2 · - and •OH generation, induced H2O2 production, improved the activity of antioxidant enzymes (SOD, CAT and APX), activated critical enzymes (PAL, C4H and 4CL) in phenylpropanoid metabolism pathway and further enhanced total phenolic and proanthocyanidin content. Above results demonstrated that UV-C together with CA-L treatment could synergistically maintain overall quality and improve antioxidant capacity of kiwifruit slices. Therefore, the combination of CA-L and UV-C treatment showed a potential practical application in fresh-cut kiwifruits.

15.
Plant Dis ; 2022 May 06.
Article in English | MEDLINE | ID: mdl-35522960

ABSTRACT

Peach (Prunus persica (L.) Batsch) is one of the most popular fruits grown in Northern China. In July 2021, a fruit rot outbreak on the peach cultivar "Yonglian Sweet" occurred after unusual rains in Baoding, Hebei Province, China. Sixty peach trees from three orchards were assessed, and a 30% disease incidence was estimated. The disease initiated as a small concave spot on the fruit surface expanding circularly rotting the fruit (3-5 cm deep) with the appearance of grayish-white mycelia (Figure S1A). The infected fruit did not disintegrate but turned light brown. To identify the pathogen, 20 infected fruits were collected, and fruit tissues from lesion margins were inoculated on the potato dextrose agar (PDA) medium. A total of 15 fungal pure cultures with highly similar morphological characteristics were obtained by the hyphal-tipping method. The fungal culture formed smooth-edged colonies of extensive, dense, wooly aerial mycelium, with color changing from sienna to luteous, and to grayish-white along the radius of colonies (Figure S1B) Chlamydospores were extensive and developed micro-sclerotia after 20 d of growth. The conidiophore produced three branches in a "broom" shape, with the primary branch ranging 7.5-25.0 µm in length, the secondary branch 5.5-15.5 µm, and the tertiary branch 10-12.5 µm (N = 30). The top of the tertiary branch tapered and produced conidia. Conidia were colorless and culm-like, 40.0-57.5 µm long and 3.8-6.25 µm wide (N = 30). Hyphae occasionally produced spherical chlamydospores with a diameter of around 7.5 µm (N = 30). Conidia germinated after 12 h in moist conditions, and germ tubes originated from multiple points on the conidia. Based on these morphological features, the isolated fungus was identified as Calonectria spp. (Lombard et al. 2010). Six loci, including ITS, act, cmdA, his3, tef1, and tub2, were amplified and sequenced for molecular identification of an isolate F099 using primers listed in Table S1. The obtained ITS (528 bp, GenBank accession no. OL635556), act (263 bp, OL694221), cmdA (470 bp, OL694222), his3 (432 bp, OL694223), tef1 (487 bp, OL694224), and tub2 (535 bp, OL694225) sequences showed 100% similarity to the ex-type strain of Calonectria canadiana, CMW 23673 (accession nos. MT359667, MT334976, MT335206, MT335446, MT412737, and MT412958, respectively; Figure S1D) (Kang et al. 2001, Lechat et al. 2010, Liu et al. 2020). The isolate F099 of C. canadiana was further subjected to pathogenicity tests. Koch's postulates were performed by placing three mycelial disks (ten-day old, 5 mm) with conidia on the sterile needle-acupunctured surface of healthy fruits of the peach cultivar "Yonglian Sweet" (N= 10). Mock inoculations with sterile PDA disks were served as a control. All the inoculated fruits were kept in a moist chamber (25℃, 16-h light and 8-h dark period). The inoculation assay was repeated twice. Rotting symptoms developed on all the inoculated fruits about 5 days post-inoculation (dpi) and grayish-white mycelia appeared around ten days post inoculation while mock inoculated fruits did not show any rotting. The pathogen of interest was re-isolated from the inoculated fruits and validated as C. canadiana by ITS and tef1 sequences. All above evidence collectively indicates that the fungal pathogen causing the peach fruit rot is C. canadiana. The new host plant and new geographic distribution reported here will inform future management of this fungal species.

16.
Front Psychiatry ; 13: 805512, 2022.
Article in English | MEDLINE | ID: mdl-35573350

ABSTRACT

Aims: To explore the public's preference for psychological interventions through a discrete choice experiment and to provide references for formulating psychological intervention policies and establishing psychological intervention procedures in response to public health emergencies. Methods: This study is a discrete choice experiment. Attributes and levels were identified through literature reviews, in-depth interviews, focus group discussions, and expert consultations. Experimental design principles were applied to generate choice sets containing different attribute levels and develop a survey instrument. Convenience sampling was conducted nationwide, and 1,045 participants were investigated. A mixed logit model was used to evaluate the public's preferences. Results: All attributes in our study were found to have a significant influence on the public's preferences for psychological interventions during the COVID-19 pandemic. The public's preferences for providers and duration were influenced by the public's levels of education and classifications. Furthermore, the most ideal scenario was found to be a one-on-one psychological intervention provided by family and friends through social network platforms, for which the frequency is twice per week, and the duration of each intervention is 0.5-1 h. Conclusions: The public's preferences for psychological interventions during the COVID-19 pandemic are affected by the method, form, frequency, provider, and duration of interventions. Our findings provide references for the formulation of psychological intervention policies and the establishment of psychological intervention procedures in response to public health emergencies.

17.
Food Chem ; 386: 132810, 2022 Aug 30.
Article in English | MEDLINE | ID: mdl-35364496

ABSTRACT

Molecular structure and functional properties of glycinin conjugated to κ-carrageenan and guar gum using a dry-heating method were comparatively analyzed. Glycosylation was confirmed by analyzing the degree of grafting, protein subunit composition, infrared absorption profile, and changes in contents of protein secondary structures. K-carrageenan was proven to possess a greater susceptibility to be grafted to glycinin than guar gum due to its relatively low molecular weight and negatively charged characteristics. The improvement of solubility by glycosylation with guar gum near the isoelectric point of glycinin was better than that by glycosylation with κ-carrageenan. Glycinin glycosylated with both polysaccharides exhibited enhanced emulsifying activity and stability. The enhanced apparent viscosity, elastic modulus, and viscous modulus also demonstrated that glycosylation promoted the appearance of stable elastic network structure. In summary, glycosylation with these two polysaccharides conferred glycinin superior emulsifying and rheological properties, and κ-carrageenan exhibited a better performance compared to guar gum.


Subject(s)
Polysaccharides , Carrageenan/chemistry , Galactans , Globulins , Mannans , Molecular Structure , Plant Gums , Polysaccharides/chemistry , Soybean Proteins
18.
Food Res Int ; 155: 111072, 2022 05.
Article in English | MEDLINE | ID: mdl-35400450

ABSTRACT

Foodborne outbreaks and recalls of pathogen-contaminated low-moisture foods (LMFs, foods with water activity at 25 °C < 0.85) have led to numerous scientific studies on bacterial persistence, as well as newly developed industrial interventions. Conducting microbial tests of LMFs, lab tests, or validation studies in pilot plans requires complete information on protocols and parameters that need to be aware of-in particular, understanding how factors influence the thermal resistance of bacterial pathogen in LMFs is critical in designing any thermal processes. This review provides detailed information on the general protocols of microbial studies of LMFs: from pertinent pathogen identification to microbial validation studies. In particular, it reviewed the detailed procedures (e.g., lawn-harvest method), analytical protocols (e.g., recovery and enumeration of pathogens in LMFs), and specialized tools that have been utilized (even widely accepted) in laboratory-based microbial studies of LMFs. It also summarized the factors that influence the microbial validation studies. This article could support the intervention of existing pasteurization processes in the LMF industry, promoting the microbial safety of LMFs.


Subject(s)
Food Microbiology , Pasteurization , Food , Pasteurization/methods , Water/analysis
19.
Food Res Int ; 155: 111098, 2022 05.
Article in English | MEDLINE | ID: mdl-35400471

ABSTRACT

Microorganisms in low-moisture foods (LMFs) exhibit prolonged survivability and high heat resistance. Various external factors (water, food texture, nutritional compounds, etc.) influence the microbial heat resistance in LMFs; yet, the influential degree of each factor is not fully understood. In this study, the thermal resistance parameters (D and z values) of Salmonella enterica Enteritidis PT 30 (S. Enteritidis) at 80, 85, and 90 °C at the room-temperature water activity (aw, 25°C) of 0.32 ± 0.02 were measured. A series of egg powders with different fat and protein ratios (obtained by mixing egg white and yolk powders) were chosen as the model foods. Primary and secondary models were built from the isothermal inactivation kinetics of S. Enteritidis in the tested samples. The importance of fat and protein was then confirmed by controlling the water activity at the treatment temperature (aw, treatment temperature) via thermal water activity cells. The survivor curves of S. Enteritidis fitted well with the Weibull-type and log-linear models. The D values of S. Enteritidis increased with increasing fat (0-56.7%, w.b.) and decreasing protein contents (83.59-31.81%, w.b.). Incorporating the modified Bigelow model into the log-linear model yielded the zfat and zprotein of 58.96 and 57.14, respectively. At the controlled aw, 90°C of 0.32 ± 0.02, the D90°C values of S. Enteritidis increased remarkably (P < 0.05), but the values in egg white, whole egg, and egg yolk powders (11.73 ± 1.24, 23.82 ± 2.0, and 60.0 ± 2.4 min) were remarkably different. Our study identified that the influential degrees of fat, protein (zfat and zprotein values), and aw on the thermal resistance of S. Enteritidis in egg powders is in the order: aw,treatment temperature > fat > protein. Fat considerably increased the thermal resistance of S. Enteritidis even at the same aw,treatment temperature. This study quantified the effect of fat and protein on the thermal resistance of S. Enteritidis and emphasized the non-negligible effects of food components in LMFs' microbial safety.


Subject(s)
Salmonella enterica , Salmonella enteritidis , Food Microbiology , Powders , Water/analysis
20.
Materials (Basel) ; 14(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34771954

ABSTRACT

In this paper, we theoretically designed and numerically analyzed an ultrabroadband meta-absorber with near unity absorptivity that works in terahertz spectrum. A wideband meta-absorber composed of bilayer patterned graphene and dielectric cylinder array with high symmetry was proposed. The wideband absorption mechanism benefited from two aspects. The first one was enhanced surface plasmons based on bilayer patterned graphene. And the second one was the coupling of continuous resonant modes within Fabry-Perot cavities to the enhanced surface plasmons in the graphene. An ultrawide bandwidth with absorptivity over 90% were obtained from 3.2 THz to 9.4 THz. Simulated results showed that the proposed ultra-wideband absorbing structure also possessed high performance of polarization independence, flexible tunability, large incident angle insensitivity, and compact fabrication.

SELECTION OF CITATIONS
SEARCH DETAIL
...