Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 386
Filter
2.
J Health Commun ; : 1-11, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836440

ABSTRACT

Masspersonal communication has emerged as a compelling alternative persuasive approach in response to the widespread use of social media. It is crucial to comprehend how observing online interpersonal interactions regarding the fear appeal of climate change can foster pro-environmental behaviors among users. This study examines the effects of vicarious message interactivity in promoting actions against climate change and the underlying mechanisms behind this effect. The results of an online experiment conducted in China (N = 236) revealed that psychological reactance and message elaboration mediated the effects of vicarious message interactivity on behavioral intention in a serial indirect effect. In comparison to static fear appeal, interactive fear appeal proves effective in reducing psychological reactance, promoting message elaboration, and ultimately increasing intention to take actions against climate change. Our findings not only contribute to the literature on interactive communication but also provide insights for environmental-health campaigns on social media.

3.
Sci Total Environ ; : 173680, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844212

ABSTRACT

Microorganisms play a critical role in the biogeochemical cycling of selenium in natural ecosystems, particularly in reducing selenite (Se(IV)) to element selenium (Se(0)) which reduces its mobility and bioavailability. However, Se(IV)-reducing bacteria and their reducing characteristics in estuarine sediments remain inadequately understood. In this study, the reduction of Se(IV) was confirmed to be microbially driven through the cultivation of a mixture of estuarine sediment and Se(IV) under aerobic conditions. Community analysis indicates that Bacillus was primarily involved in the reduction of Se(IV). A strain with high salt tolerance (7.5 % NaCl) and Se(IV) resistance (up to 200 mM), Bacillus cereus SD1, was isolated from an estuarine sediment. The reduction of Se(IV) occurred concomitantly with the onset of microbial growth, and reduction capacity increased approximately 5-fold by adjusting the pH. In addition, Se(IV) reduction in Bacillus cereus SD1 was significantly inhibited by sulfite, and the key enzyme activity tests revealed the possible presence of a sulfite reductase-mediated Se(IV) reduction pathway. These research findings provide new insights into the bioreducing characteristics and the biogeochemical cycling of selenium in estuarine environments.

4.
BMC Geriatr ; 24(1): 406, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714939

ABSTRACT

OBJECTIVES: Older people are more likely to have digital exclusion, which is associated with poor health. This study investigated the relationship between digital exclusion and cognitive impairment in older adults from 23 countries across five longitudinal surveys. DESIGN AND MEASUREMENTS: Digital exclusion is defined as self-reported non-use of the Internet. We assessed cognitive impairment on three dimensions: orientation, memory, and executive function. We used generalized estimation equations fitting binary logistic regression with exchangeable correlations to study the relationship between digital exclusion and cognitive impairment, and apply the minimum sufficiently adjusted set of causally directed acyclic graphs as the adjusted variable. SETTING AND PARTICIPANTS: We pooled a nationally representative sample of older adults from five longitudinal studies, including the China Health and Retirement Longitudinal study (CHARLS), the English Longitudinal Study of Ageing (ELSA), the Health and Retirement Study (HRS), the Mexican Health and Ageing Study (MHAS) and the Survey of Health, Ageing and Retirement in European (SHARE). RESULTS: We included 62,413 participants from five longitudinal studies. Digital exclusion varied by country, ranging from 21.69% (SHARE) in Denmark to 97.15% (CHARLS) in China. In the original model, digital exclusion was significantly associated with cognitive impairment in all five studies. In the adjusted model, these associations remained statistically significant: CHARLS (Odds ratio [OR] = 2.81, 95% confidence interval [CI] 1.84-4.28, ELSA (1.92 [1.70-2.18]), HRS(2.48[2.28-2.71), MHAS (1.92 [1.74-2.12]), and SHARE (2.60 [2.34-2.88]). CONCLUSION: Our research shows that a significant proportion of older people suffer from digital exclusion, especially in China. Digital exclusion was positively correlated with cognitive impairment. These findings suggest that digital inclusion could be an important strategy to improve cognitive function and reduce the risk of cognitive impairment in older adults.


Subject(s)
Cognitive Dysfunction , Humans , Aged , Longitudinal Studies , Male , Female , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Middle Aged , Aged, 80 and over , China/epidemiology , Internet Use/statistics & numerical data
5.
Front Cell Infect Microbiol ; 14: 1366136, 2024.
Article in English | MEDLINE | ID: mdl-38698906

ABSTRACT

Introduction: Vitamin D deficiency is the most common nutritional deficiency worldwide. Chronic vitamin D deficiency causes immune system dysfunction, which increases susceptibility to pathogens such as bacteria, especially intracellular parasites, and viruses. Chlamydia trachomatis (C. t) is an obligate intracellular parasitic bacterium that causes a variety of sequelae. We speculated that vitamin D might be associated with C. t infection. This study aimed to address this gap in knowledge by investigating the relationship between vitamin D and C. t infection using both in vitro and in vivo models. Methods and results: The addition of calcitriol to McCoy cell culture in vitro delayed and reduced the quantity and volume of inclusions compared to the control group. Macrophages of peritoneally lavaged mice co-cultured with McCoy decreased the infection rate and delayed the appearance of inclusions. In mice models of vitamin D deficiency, mice in the VD-group exhibited more severe genital tract inflammation and a longer duration of infection after inoculation with C. t in the genital tract. Supplementing these mice with vitamin D3 during treatment enhanced the therapeutic effect of antibiotics. We also conducted a case-control study involving 174 C. t-positive patients (95 males and 79 females) and 380 healthy volunteers (211 males and 169 females) aged 20-49 from January 2016 to March 15, 2017. Serum 25-(OH)D concentration was measured by assessing morning fasting blood samples of healthy volunteers and C. t-positive patients 1 day before antibiotic treatment and the next day after one course of treatment. The patients were followed up for 1 month and evaluated for recovery. The results showed that vitamin D deficiency was a risk factor for C. t infection and treatment failure. Conclusion: In summary, findings from experimental and clinical studies indicate a close association between vitamin D levels and C. t infection and treatment outcomes. Given the affordability and safety of vitamin D, both healthy individuals and patients should focus on vitamin D intake. Vitamin D supplementation could enhance treatment success and should be used as an adjunctive therapy alongside antibiotic therapy for C. t infections, pending confirmation in larger, prospective, randomized controlled trials.


Subject(s)
Chlamydia Infections , Chlamydia trachomatis , Disease Models, Animal , Vitamin D Deficiency , Vitamin D , Chlamydia trachomatis/drug effects , Animals , Humans , Case-Control Studies , Female , Chlamydia Infections/drug therapy , Mice , Male , Adult , Vitamin D Deficiency/complications , Middle Aged , Vitamin D/blood , Vitamin D/pharmacology , Young Adult , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Macrophages , Calcitriol
6.
Adv Mater ; : e2405165, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758975

ABSTRACT

Solid nanoparticle-mediated drug delivery systems are usually confined to nanoscale due to the enhanced permeability and retention (EPR) effect. However, they remain a great challenge for malignant glioma chemotherapy because of poor drug delivery efficiency and insufficient tumor penetration resulting from the blood-brain barrier/blood-brain tumor barrier (BBB/BBTB). Inspired by biological microparticles (e.g., cells) with excellent adaptive deformation, we demonstrate that the adaptive microdrugs (even up to 3.0 µm in size) are more efficient than their nanodrugs (less than 200 nm in size) to cross BBB/BBTB and penetrate into tumor tissues, achieving highly efficient chemotherapy of malignant glioma. The distinct delivery of the adaptive microdrugs is mainly attributed to the enhanced interfacial binding and endocytosis via adaptive deformation. As expected, the obtained adaptive microdrugs exhibited enhanced accumulation, deep penetration, and cellular internalization into tumor tissues in comparison with nanodrugs, significantly improving the survival rate of glioblastoma mice. We believe that the bioinspired adaptive microdrugs enable them to efficiently cross physiological barriers and deeply penetrate tumor tissues for drug delivery, providing an avenue for the treatment of solid tumors. This article is protected by copyright. All rights reserved.

7.
Environ Pollut ; 356: 124254, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815893

ABSTRACT

There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.

8.
Int J Surg Case Rep ; 120: 109783, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38795410

ABSTRACT

INTRODUCTION AND IMPORTANCE: Partially anomalous pulmonary venous connection (PAPVC) is a rare congenital heart disease, often concomitant with atrial septal defects (ASDs). PAPVC usually tends to be treated by surgery, but the case we report will open up new perspectives for the interventional treatment of PAPVC present with ASD. CASE PRESENTATION: We present a case of a 2-year-old 11 kg boy transthoracic echocardiography showed secundum-type ASD. A supracardiac-PAPVC was accidentally detected during cardiac catheterization, and an abnormal pulmonary vein connection was detected with a vertical vein (VV) opening. Ultimately, ASD and VV were both occluded. CLINICAL DISCUSSION: Surgical therapy of PAPVC is the first line treatment of most centers in the world. However, the main complications after surgical repair of PAPVC raise our concerns, such as pulmonary stenosis, caval vein stenosis and sinus node dysfunction. Therefore, percutaneous closure of PAPVC can be an alternative method. This case of percutaneous interventional closure of ASD and supracardiac PAPVC through a vertical vein in the same surgery was first reported. Patients with ASD tend to have missed diagnoses of PAPVC. We can evaluate it by transesophageal echocardiography (TEE), cardiac magnetic resonance imaging (CMR) and computed tomography (CT). CONCLUSIONS: This case suggests that the effect of interventional therapy is quite reliable. For children with ASD, attention should be paid to the omission of the presence or absence of PAPVC before surgery. During interventional therapy, a guide wire rather than a catheter should be preferred to explore the atrial septum and pulmonary veins to avoid a missed diagnosis of PAPVC.

9.
J Hazard Mater ; 472: 134564, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38743982

ABSTRACT

Heteroaggregation between polystyrene nanoplastics (PSNPs) and soot nanoparticles (STNPs) in aquatic environments may affect their fate and transport. This study investigated the effects of particle concentration ratio, electrolytes, pH, and humic acid on their heteroaggregation kinetics. The critical coagulation concentration (CCC) ranked CCCPSNPs > CCCPSNPs-STNPs > CCCSTNPs, indicating that heteroaggregation rates fell between homoaggregation rates. In NaCl solution, as the PSNPs/STNPs ratio decreased from 9/1 to 3/7, heteroaggregation rate decreased and CCCPSNPs-STNPs increased from 200 to 220 mM due to enhanced electrostatic repulsion. Outlier was observed at PSNPs/STNPs= 1/9, where CCCPSNPs-STNPs= 170 mM and homoaggregation of STNPs dominated. However, in CaCl2 solution where calcium bridged with STNPs, heteroaggregation rate increased and CCCPSNPs-STNPs decreased from 26 to 5 mM as the PSNPs/STNPs ratio decreasing from 9/1 to 1/9. In composite water samples, heteroaggregation occurred only at estuarine and marine salinities. Acidic condition promoted heteroaggregation via charge screening. Humic acid retarded or promoted heteroaggregation in NaCl or CaCl2 solutions by steric hindrance or calcium bridging, respectively. Other than van der Waals attraction and electrostatic repulsion, heteroaggregation was affected by steric hindrance, hydrophobic interactions, π - π interactions, and calcium bridging. The results highlight the role of black carbon on colloidal stability of PSNPs in aquatic environments.

10.
iScience ; 27(5): 109676, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38665208

ABSTRACT

Growing evidences indicate that RNA-binding proteins (RBPs) play critical roles in regulating the RNA splicing, polyadenylation, stability, localization, translation, and turnover. Abnormal expression of RBPs can promote tumorigenesis. Here, we performed a CRISPR screen using an RBP pooled CRISPR knockout library and identified 27 potential RBPs with role in supporting colorectal cancer (CRC) survival. We found that the deletion/depletion of INTS3 triggered apoptosis in CRC. The in vitro experiments and RNA sequencing revealed that INTS3 destabilized pro-apoptotic gene transcripts and contributed to the survival of CRC cells. INTS3 loss delayed CRC cells growth in vivo. Furthermore, delivery of DOTAP/cholesterol-mshINTS3 nanoparticles inhibited CRC tumor growth. Collectively, our work highlights the role of INTS3 in supporting CRC survival and provides several novel therapeutic targets for treatment.

11.
Front Microbiol ; 15: 1376994, 2024.
Article in English | MEDLINE | ID: mdl-38628864

ABSTRACT

Introduction: The rumen microbial community plays a crucial role in the digestion and metabolic processes of ruminants. Although sequencing-based studies have helped reveal the diversity and functions of bacteria in the rumen, their physiological and biochemical characteristics, as well as their dynamic regulation along the digestion process in the rumen, remain poorly understood. Addressing these gaps requires pure culture studies to demystify the intricate mechanisms at play. Bacteria exhibit morphological differentiation associated with different species. Based on the difference in size or shape of microorganisms, size fractionation by filters with various pore sizes can be used to separate them. Methods: In this study, we used polyvinylidene difluoride filters with pore sizes of 300, 120, 80, 40, 20, 8, 6, 2.1, and 0.6 µm. Bacterial suspensions were successively passed through these filters for the analysis of microbial population distribution using 16S rRNA gene sequences. Results: We found that bacteria from the different pore sizes were clustered into four branches (> 120 µm, 40-120 µm, 6-20 µm, 20-40 µm, and < 0.6 µm), indicating that size fractionation had effects on enriching specific groups but could not effectively separate dominant groups by cell size alone. The species of unclassified Flavobacterium, unclassified Chryseobacterium, unclassified Delftia, Methylotenera mobilis, unclassified Caulobacteraceae, unclassified Oligella, unclassified Sphingomonas, unclassified Stenotrophomonas, unclassified Shuttleworthia, unclassified Sutterella, unclassified Alphaproteobacteria, and unclassified SR1 can be efficiently enriched or separated by size fractionation. Discussion: In this study, we investigated the diversity of sorted bacteria populations in the rumen for preliminary investigations of the relationship between the size and classification of rumen bacteria that have the potential to improve our ability to isolate and culture bacteria from the rumen in the future.

12.
Tissue Eng Regen Med ; 21(4): 545-556, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38573476

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS: Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS: Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION: Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.


Subject(s)
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2 , Humans , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Lung
13.
Environ Sci Pollut Res Int ; 31(19): 28754-28763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38558345

ABSTRACT

Fenoxaprop-p-ethyl (FE) is one of the typical aryloxyphenoxypropionate herbicides. FE has been widely applied in agriculture in recent years. Human health and aquatic ecosystems are threatened by the cyanobacteria blooms caused by Microcystis aeruginosa, which is one of the most common cyanobacteria responsible for freshwater blooming. Few studies have been reported on the physiological effects of FE on M. aeruginosa. This study analyzed the growth curves, the contents of chlorophyll a and protein, the oxidative stress, and the microcystin-LR (MC-LR) levels of M. aeruginosa exposed to various FE concentrations (i.e., 0, 0.5, 1, 2, and 5 mg/L). FE was observed to stimulate the cell density, chlorophyll a content, and protein content of M. aeruginosa at 0.5- and 1-mg/L FE concentrations but inhibit them at 2 and 5 mg/L FE concentrations. The superoxide dismutase and catalase activities were enhanced and the malondialdehyde concentration was increased by FE. The intracellular (intra-) and extracellular (extra-) MC-LR contents were also affected by FE. The expression levels of photosynthesis-related genes psbD1, psaB, and rbcL varied in response to FE exposure. Moreover, the expressions of microcystin synthase-related genes mcyA and mcyD and microcystin transportation-related gene mcyH were significantly inhibited by the treatment with 2 and 5 mg/L FE concentrations. These results might be helpful in evaluating the ecotoxicity of FE and guiding the rational application of herbicides in modern agriculture.


Subject(s)
Herbicides , Marine Toxins , Microcystis , Oxazoles , Microcystis/drug effects , Herbicides/toxicity , Antioxidants/metabolism , Oxidative Stress/drug effects , Propionates , Gene Expression/drug effects , Microcystins
14.
Phys Chem Chem Phys ; 26(16): 12717-12724, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38606481

ABSTRACT

Pivotal enhancements in electronic minimization algorithms, which are vital for the advancement of computational materials science, are introduced in this research. Our research is dedicated to refining the DIIS algorithm specifically for electronic structure calculations of silicon (Si) and gallium arsenide (GaAs) solar cells, aiming to enhance their efficiency and stability. We have enriched DIIS by integrating a weight regularization factor, significantly bolstering its convergence stability. This modification enhances iteration robustness and curtails the average iteration duration, thus streamlining the convergence process. Furthermore, we have incorporated the conjugate gradient (CG) algorithm to proficiently resolve symmetric positive definite residual matrices. This inclusion substantially accelerates the solution-finding process within the DIIS framework. A novel aspect of our research is the application of reverse automatic differentiation (AD), deployed in two distinct methodologies: the construction of the Jacobian matrix and direct chain rule application for gradient computation. These approaches involve sophisticated mathematical techniques that enhance computational precision and efficiency specifically for Si and GaAs solar cell materials in determining the optimal weights for residual combinations during DIIS iterations. The integration of these advanced methods into the DIIS algorithm not only augments its convergence stability but also ensures a substantial reduction in total computational time. Our findings demonstrate that the enhanced DIIS, CG-enhanced DIIS, and AD-integrated DIIS methods collectively lead to a more efficient electronic minimization process. This balance of stability and efficiency is crucial in high-performance computational materials science, particularly for complex systems analysis. The findings of this research represent a notable advancement in computational strategies for Si and GaAs solar cell materials, providing enhanced methodologies and insights that significantly improve the efficiency and stability of electronic structure calculations in these critical components of renewable energy technologies.

15.
Foods ; 13(6)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38540920

ABSTRACT

To determine whether sarcoplasmic proteins affected water migration in myofibrils during air-drying, with protein denaturation as an indicator of sarcoplasmic protein changes, the extent of sarcoplasmic protein changes in lamb during air-drying was first studied. The results showed that sarcoplasmic protein's thermal stability decreased and secondary structure changed, indicating sarcoplasmic protein denatured in lamb during air-drying (35 °C, 60% RH, 3 m/s wind speed). Subsequently, the effect of sarcoplasmic protein solutions, dried at different times and rates, on myofibril protein-water interaction was studied in vitro. Two sets of sarcoplasmic protein solutions were dried for 0, 3, 6, and 9 h in a drying oven, resulting in different degrees of change. These two sets with higher or lower drying rates were achieved by controlling the contact area between sarcoplasmic protein solution and air. These dried sarcoplasmic protein solutions were then mixed with extracted myofibril and incubated for 2 h. The results showed a significant increase in T21 relaxation time of the incubation system when sarcoplasmic protein solution was dried at 35 °C for 3 h. This indicated that myofibrillar protein-water interaction was weakened, facilitating water migration from the inside to the outside of myofibrils. The denaturation degree of sarcoplasmic proteins was slowed by a higher drying rate, thereby alleviating the increase in the amount of immobile water within myofibrils when dried for 6 h. In conclusion, the properties of sarcoplasmic proteins were influenced by both drying rate and time, thereby influencing the water migration within myofibrils during air-drying.

16.
Planta ; 259(5): 104, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551672

ABSTRACT

MAIN CONCLUSION: The post-transcriptional gene regulatory pathway and small RNA pathway play important roles in regulating the rapid and long-term response of Rhododendron moulmainense to high-temperature stress. The Rhododendron plays an important role in maintaining ecological balance. However, it is difficult to domesticate for use in urban ecosystems due to their strict optimum growth temperature condition, and its evolution and adaptation are little known. Here, we combined transcriptome and small RNAome to reveal the rapid response and long-term adaptability regulation strategies in Rhododendron moulmainense under high-temperature stress. The post-transcriptional gene regulatory pathway plays important roles in stress response, in which the protein folding pathway is rapidly induced at 4 h after heat stress, and alternative splicing plays an important role in regulating gene expression at 7 days after heat stress. The chloroplasts oxidative damage is the main factor inhibiting photosynthesis efficiency. Through WGCNA analysis, we identified gene association patterns and potential key regulatory genes responsible for maintaining the ROS steady-state under heat stress. Finally, we found that the sRNA synthesis pathway is induced under heat stress. Combined with small RNAome, we found that more miRNAs are significantly changed under long-term heat stress. Furthermore, MYBs might play a central role in target gene interaction network of differentially expressed miRNAs in R. moulmainense under heat stress. MYBs are closely related to ABA, consistently, ABA synthesis and signaling pathways are significantly inhibited, and the change in stomatal aperture is not obvious under heat stress. Taken together, we gained valuable insights into the transplantation and long-term conservation domestication of Rhododendron, and provide genetic resources for genetic modification and molecular breeding to improve heat resistance in Rhododendron.


Subject(s)
MicroRNAs , Rhododendron , Transcriptome/genetics , Rhododendron/genetics , Rhododendron/metabolism , Ecosystem , Heat-Shock Response/genetics , MicroRNAs/genetics , Gene Expression Profiling
17.
Mol Biol Evol ; 41(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38552245

ABSTRACT

Domestication and artificial selection during production-oriented breeding have greatly shaped the level of genomic variability in sheep. However, the genetic variation associated with increased reproduction remains elusive. Here, two groups of samples from consecutively monotocous and polytocous sheep were collected for genome-wide association, transcriptomic, proteomic, and metabolomic analyses to explore the genetic variation in fecundity in Tibetan sheep. Genome-wide association study revealed strong associations between BMPR1B (p.Q249R) and litter size, as well as between PAPPA and lambing interval; these findings were validated in 1,130 individuals. Furthermore, we constructed the first single-cell atlas of Tibetan sheep ovary tissues and identified a specific mural granulosa cell subtype with PAPPA-specific expression and differential expression of BMPR1B between the two groups. Bulk RNA-seq indicated that BMPR1B and PAPPA expressions were similar between the two groups of sheep. 3D protein structure prediction and coimmunoprecipitation analysis indicated that mutation and mutually exclusive exons of BMPR1B are the main mechanisms for prolific Tibetan sheep. We propose that PAPPA is a key gene for stimulating ovarian follicular growth and development, and steroidogenesis. Our work reveals the genetic variation in reproductive performance in Tibetan sheep, providing insights and valuable genetic resources for the discovery of genes and regulatory mechanisms that improve reproductive success.


Subject(s)
Genome-Wide Association Study , Multiomics , Humans , Female , Sheep/genetics , Animals , Tibet , Proteomics , Reproduction , Mutation
18.
J Biophotonics ; : e202300552, 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494760

ABSTRACT

The multifaceted nature of photodynamic therapy (PDT) requires a throughout evaluation of a multitude of parameters when devising preclinical protocols. In this study, we constructed MCF-7 human breast tumor spheroid assays to infer PDT irradiation doses at four gradient levels for violet light at 408 nm and red light at 625 nm under normal and hypoxic oxygen conditions. The compacted three-dimensional (3D) tumor models conferred PDT resistance as compared to monolayer cultures due to heterogenous distribution of photosensitizers along with the presence of internal hypoxic region. Cell viability results indicated that the violet light was more efficient to kill cells in the spheroids under normal oxygen conditions, while cells exposed to the hypoxic microenvironment exhibited minimal PDT-induced death. The combination of 3D tumor spheroid assays and the multiparametric screening platform presented a solid framework for assessing PDT efficacy across a wide range of different physiological conditions and therapeutic regimes.

19.
Bioact Mater ; 36: 1-13, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38425744

ABSTRACT

Osteoarthritis (OA) progresses due to the excessive generation of reactive oxygen and nitrogen species (ROS/RNS) and abnormal ATP energy metabolism related to the oxidative phosphorylation pathway in the mitochondria. Highly active single-atom nanozymes (SAzymes) can help regulate the redox balance and have shown their potential in the treatment of inflammatory diseases. In this study, we innovatively utilised ligand-mediated strategies to chelate Pt4+ with modified g-C3N4 by π-π interaction to prepare g-C3N4-loaded Pt single-atom (Pt SA/C3N4) nanozymes that serve as superoxide dismutase (SOD)/catalase (CAT) mimics to scavenge ROS/RNS and regulate mitochondrial ATP production, ultimately delaying the progression of OA. Pt SA/C3N4 exhibited a high loading of Pt single atoms (2.45 wt%), with an excellent photothermal conversion efficiency (54.71%), resulting in tunable catalytic activities under near-infrared light (NIR) irradiation. Interestingly, the Pt-N6 active centres in Pt SA/C3N4 formed electron capture sites for electron holes, in which g-C3N4 regulated the d-band centre of Pt, and the N-rich sites transferred electrons to Pt, leading to the enhanced adsorption of free radicals and thus higher SOD- and CAT-like activities compared with pure g-C3N4 and g-C3N4-loaded Pt nanoparticles (Pt NPs/C3N4). Based on the use of H2O2-induced chondrocytes to simulate ROS-injured cartilage invitro and an OA joint model invivo, the results showed that Pt SA/C3N4 could reduce oxidative stress-induced damage, protect mitochondrial function, inhibit inflammation progression, and rebuild the OA microenvironment, thereby delaying the progression of OA. In particular, under NIR light irradiation, Pt SA/C3N4 could help reverse the oxidative stress-induced joint cartilage damage, bringing it closer to the state of the normal cartilage. Mechanistically, Pt SA/C3N4 regulated the expression of mitochondrial respiratory chain complexes, mainly NDUFV2 of complex 1 and MT-ATP6 of ATP synthase, to reduce ROS/RNS and promote ATP production. This study provides novel insights into the design of artificial nanozymes for treating oxidative stress-induced inflammatory diseases.

20.
Sci Rep ; 14(1): 3630, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351201

ABSTRACT

Urban park management assessment is critical to park operation and service quality. Traditional assessment methods cannot comprehensively assess park use and environmental conditions. Besides, although social media and big data have shown significant advantages in understanding public behavior or preference and park features or values, there has been little relevant research on park management assessment. This study proposes a deep learning-based framework for assessing urban park intelligent management from macro to micro levels with comment data from social media. By taking seven parks in Wuhan City as the objects, this study quantitatively assesses their overall state and performance in facilities, safety, environment, activities, and services, and reveals their main problems in management. The results demonstrate the impacts of various factors, including park type, season, and specific events such as remodeling and refurbishment, on visitor satisfaction and the characteristics of individual parks and their management. Compared with traditional methods, this framework enables real-time intelligent assessment of park management, which can accurately reflect park use and visitor feedback, and improve park service quality and management efficiency. Overall, this study provides important reference for intelligent park management assessment based on big data and artificial intelligence, which can facilitate the future development of smart cities.

SELECTION OF CITATIONS
SEARCH DETAIL
...