Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6814, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514736

ABSTRACT

The present study aims to assess the treatment outcome of patients with diabetes and tuberculosis (TB-DM) at an early stage using machine learning (ML) based on electronic medical records (EMRs). A total of 429 patients were included at Chongqing Public Health Medical Center. The random-forest-based Boruta algorithm was employed to select the essential variables, and four models with a fivefold cross-validation scheme were used for modeling and model evaluation. Furthermore, we adopted SHapley additive explanations to interpret results from the tree-based model. 9 features out of 69 candidate features were chosen as predictors. Among these predictors, the type of resistance was the most important feature, followed by activated partial throm-boplastic time (APTT), thrombin time (TT), platelet distribution width (PDW), and prothrombin time (PT). All the models we established performed above an AUC 0.7 with good predictive performance. XGBoost, the optimal performing model, predicts the risk of treatment failure in the test set with an AUC 0.9281. This study suggests that machine learning approach (XGBoost) presented in this study identifies patients with TB-DM at higher risk of treatment failure at an early stage based on EMRs. The application of a convenient and economy EMRs based on machine learning provides new insight into TB-DM treatment strategies in low and middle-income countries.


Subject(s)
Diabetes Mellitus , Humans , Comorbidity , Treatment Failure , Electronic Health Records , Machine Learning
2.
Huan Jing Ke Xue ; 44(12): 6541-6550, 2023 Dec 08.
Article in Chinese | MEDLINE | ID: mdl-38098382

ABSTRACT

To accurately assess the health benefits of the coal-to-electricity policy during the heating period in the Beijing-Tianjin-Hebei(BTH) Region, the premature deaths caused by PM2.5 before and after the implementation of the coal-to-electricity policy during the heating period in each district and county of the BTH Region were estimated, and the corresponding health loss values were calculated using the willingness to pay method. The results showed that the implementation of the coal-to-electricity policy in the BTH Region brought 1745 cases(95% CI:1443-1907) of health benefits and 2.38 billion yuan(95% CI:1.45-3.06) in economic benefits. In Beijing, Tianjin, and Hebei there were 495 cases(95% CI:436-554), 296 cases(95% CI:238-354), and 954 cases(95% CI:693-1076) of health benefits, respectively. The economic benefits were 0.35 billion yuan(95% CI:0.30-0.39), 0.33 billion yuan(95% CI:0.27-0.40), and 1.70 billion yuan(95% CI:0.88-2.28), respectively, accounting for 0.01%, 0.02%, and 0.04% of GDP in each region. The number of premature deaths due to COPD, LC, ALRI, IHD, and STROKE decreased by 187 cases(95% CI:165-224), 318 cases(95% CI:178-458), 193 cases(95% CI:115-204), 506 cases(95% CI:232-780), and 542 cases(95% CI:463-621), respectively. Areas with relatively high environmental PM2.5 concentrations and concentrated population-intensive pollution emissions can achieve significant health and economic benefits.


Subject(s)
Air Pollutants , Air Pollution , Beijing , Air Pollutants/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Particulate Matter/analysis , Coal/analysis , Environmental Monitoring , Policy , China
3.
Zhonghua Nan Ke Xue ; 29(6): 505-510, 2023 Jun.
Article in Chinese | MEDLINE | ID: mdl-38602722

ABSTRACT

OBJECTIVE: Exploring the libido status of male chronic headache patients and analyzing its relationship with headache symptoms, sleep, anxiety, and depression, providing reference for the comprehensive treatment of male chronic headache. METHODS: 179 patients with chronic headache who visited the Third Affiliated Hospital of Qiqihar Medical College from January 2022 to February 2023 were selected. The male Self Rated Libido Scale , Visual Analog Scale for Pain, Migraine Disability Assessment Scale, Pittsburgh Sleep Quality Index, Generalized Anxiety Disorder Scale-7, and Patient Health Questionnaire-9 were used to evaluate the libido status, headache severity, disability level, sleep quality, anxiety, and depression of the research subjects, respectively. RESULTS: Among 179 male chronic headache patients, 97 were chronic migraine (CM) patients and 82 were chronic tension type (CTT) patients, and 47 were screened for low libido. The influencing factors of libido in male chronic headache patients include age, smoking, frequency of exercise, course of disease, severity of pain, frequency of headache, disability score, sleep quality, anxiety and depression (all P<0.05). Compared with male CTT patients, male CM patients have higher pain severity, headache frequency, disability score, and anxiety score, while lower libido score (all P<0.05). The results of multivariate analysis showed that age, frequency of exercise, course of disease, severity of pain, frequency of headache, degree of disability, sleep quality, anxiety, and depression were the influencing factors for the decline of libido in male chronic headache patients. CONCLUSION: It is common for male chronic headache patients to experience decreased libido, with male chronic migraine (CM) patients exhibiting more severe reductions. Advanced age, decreased physical activity, longer disease duration, severe pain intensity, frequent headaches, higher disability levels, poor sleep, anxiety, and depression are risk factors for decreased libido in male chronic headache patients.


Subject(s)
Headache Disorders , Migraine Disorders , Humans , Male , Cross-Sectional Studies , Libido , Headache Disorders/epidemiology , Risk Factors , Headache , Pain
4.
AIMS Mol Sci ; 7(2): 82-98, 2020.
Article in English | MEDLINE | ID: mdl-32953979

ABSTRACT

Stem cells including cancer stem cells (CSC) divide symmetrically or asymmetrically. Usually symmetric cell division makes two daughter cells of the same fate, either as stem cells or more differentiated progenies; while asymmetric cell division (ACD) produces daughter cells of different fates. In this review, we first provide an overview of ACD, and then discuss more molecular details of ACD using the well-characterized Drosophila neuroblast system as an example. Aiming to explore the connections between cell heterogeneity in cancers and the critical need of ACD for self-renewal and generating cell diversity, we then examine how cell division symmetry control impacts common features associated with CSCs, including niche competition, cancer dormancy, drug resistance, epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET), and cancer stem cell plasticity. As CSC may underlie resistance to therapy and cancer metastasis, understanding how cell division mode is selected and executed in these cells will provide possible strategies to target CSC.

5.
Huan Jing Ke Xue ; 41(3): 1184-1196, 2020 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-32608620

ABSTRACT

An important tributary in the middle stream of the Yellow River, the Yiluo River consists of the Luohe River and Yihe River, which converge at Yanshi City. Mining activities were widely distributed in the upstream of the Yiluo River Basin (YRB), while residential areas concentrated in the downstream were coupled with extensively industrial and agricultural activities. To illustrate the influences of variable anthropogenic activities on the hydro-chemical composition of river water of the YRB, water samples from the main stream and tributaries were collected in the flood season (August) and normal season (December), respectively. The hydrogen and oxygen isotope values coupled with cation and anion content were analyzed. Temporal and spatial variations of hydrogen and oxygen isotopes and ion content were utilized to elucidate the sources and factors controlling the hydro-chemical composition of the river water, and to illustrate the pathways of human effects. The results demonstrated that:① Average hydrogen and oxygen isotope values (δD and δ18O) of Luo River water were -56‰ and -7.9‰, and -55‰ and -8.1‰ in the flood season and normal season, respectively. Mean δD and δ18O values of Yi River water were -49‰ and -6.9‰, and -53‰ and -7.8‰ in the flood season and normal season, respectively. These temporal variations indicated that river water was mainly recharged by local atmospheric precipitation. ② The dominant water hydro-chemical type was HCO3-SO4-Ca-Mg in the main stream of the YRB, and the ratios of Ca2+ and HCO3- molar equivalent concentrations in the flood season were lower than those in the normal season, while the ratios of SO42- molar equivalent concentrations were higher than those in the normal season, indicating more sulfate dissolved in the river water in the flood season. ③ Carbonic acid and sulfuric acid simultaneously reacted with carbonate and silicate rocks, and in the Luo River more carbonate rocks were weathered, while in the Yi River more silicate rocks were weathered. ④ Human effects on river water were mainly concentrated in the upstream where wastewater input was derived from mining activities, while in the downstream pollution of the river was due to industrial wastewater and sewage input. ⑤ Spatial variations of sulfate sulfur isotope values were mostly due to differences between anthropogenic activities in the upstream and downstream of the Yiluo River. Negative sulfur isotope values in the upstream river water confirmed dissolved sulfate from sulfide mineral oxidation, which also indirectly verified the rock chemical weathering by sulfuric acid in this area. Positive sulfur isotope values in downstream river water were connected with industrial wastewater and sewage.

8.
Front Cell Dev Biol ; 6: 51, 2018.
Article in English | MEDLINE | ID: mdl-29868582

ABSTRACT

The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.

9.
J Biol Chem ; 293(2): 484-496, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29162720

ABSTRACT

As a sensitive signaling system, the mitotic checkpoint ensures faithful chromosome segregation by delaying anaphase onset even when a single kinetochore is unattached to mitotic spindle microtubules. The key signal amplification reaction for the checkpoint is the conformational conversion of "open" mitotic arrest deficient 2 (O-MAD2) into "closed" MAD2 (C-MAD2). The reaction has been suggested to be catalyzed by an unusual catalyst, a MAD1:C-MAD2 tetramer, but how the catalysis is executed and regulated remains elusive. Here, we report that in addition to the well-characterized middle region of MAD1 containing the MAD2-interaction motif (MIM), both N- and C-terminal domains (NTD and CTD) of MAD1 also contribute to mitotic checkpoint signaling. Unlike the MIM, which stably associated only with C-MAD2, the NTD and CTD in MAD1 surprisingly bound both O- and C-MAD2, suggesting that these two domains interact with both substrates and products of the O-to-C conversion. MAD1NTD and MAD1CTD also interacted with each other and with the MPS1 protein kinase, which phosphorylated both NTD and CTD. This phosphorylation decreased the NTD:CTD interaction and also CTD's interaction with MPS1. Of note, mutating the phosphorylation sites in the MAD1CTD, including Thr-716, compromised MAD2 binding and the checkpoint responses. We further noted that Ser-610 and Tyr-634 also contribute to the mitotic checkpoint signaling. Our results have uncovered that the MAD1NTD and MAD1CTD directly interact with each other and with MAD2 conformers and are regulated by MPS1 kinase, providing critical insights into mitotic checkpoint signaling.


Subject(s)
Cell Cycle Proteins/metabolism , Mad2 Proteins/metabolism , Mitosis/physiology , Nuclear Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , Humans , Immunoblotting , Kinetochores/metabolism , Kinetochores/physiology , Mad2 Proteins/genetics , Mitosis/genetics , Nuclear Proteins/genetics , Phosphorylation , Signal Transduction/genetics , Signal Transduction/physiology , Spindle Apparatus/metabolism , Spindle Apparatus/physiology
10.
PLoS One ; 11(4): e0153518, 2016.
Article in English | MEDLINE | ID: mdl-27082996

ABSTRACT

OTSSP167 was recently characterized as a potent inhibitor for maternal embryonic leucine zipper kinase (MELK) and is currently tested in Phase I clinical trials for solid tumors that have not responded to other treatment. Here we report that OTSSP167 abrogates the mitotic checkpoint at concentrations used to inhibit MELK. The abrogation is not recapitulated by RNAi mediated silencing of MELK in cells. Although OTSSP167 indeed inhibits MELK, it exhibits off-target activity against Aurora B kinase in vitro and in cells. Furthermore, OTSSP167 inhibits BUB1 and Haspin kinases, reducing phosphorylation at histones H2AT120 and H3T3 and causing mislocalization of Aurora B and associated chromosomal passenger complex from the centromere/kinetochore. The results suggest that OTSSP167 may have additional mechanisms of action for cancer cell killing and caution the use of OTSSP167 as a MELK specific kinase inhibitor in biochemical and cellular assays.


Subject(s)
M Phase Cell Cycle Checkpoints/drug effects , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacology , Antibodies/pharmacology , Aurora Kinase B/antagonists & inhibitors , Centromere/drug effects , Centromere/physiology , HeLa Cells , Humans , Kinetochores/drug effects , Kinetochores/physiology , MCF-7 Cells , Mitosis/drug effects , Mitosis/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , Signal Transduction/drug effects
11.
AIMS Mol Sci ; 3(4): 597-634, 2016.
Article in English | MEDLINE | ID: mdl-28920074

ABSTRACT

The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)-the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.

12.
Zhen Ci Yan Jiu ; 40(6): 431-8, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-26887202

ABSTRACT

OBJECTIVE: To observe the effect of electroacupuncture (EA) therapy on levels of oxygen free radicals (OFR) and hippocampal apoptosis-related protein expression in ischemic learning-memory disorder rats so as to investigate its mechanisms underlying improvement of ischemic learning-memory impairment. METHODS: A total of 60 SD rats were randomly divided into sham operation (sham), model, medication, and EA groups, with 15 rats in each group. The learning-memory disorder model was made by occlusion of bilateral carotid arteries. EA (2- 3 Hz, 2 mA) was applied to "Zhi San Zhen" ["Shenting" (GV 24) and bilateral "Benshen" (GB 13)] for 30 min, once a day for 3 weeks. The rats of the medication group were treated by lavage of Aricept (0.03 mg . kg(-1) . d(-1)), once daily for 3 weeks. The rats' learning-memory ability was detected by Morris water maze tests and the state of hippocampal apoptosis cells was observed by light microscope after TUNEL staining and the expression of hippocampal Bcl-2, Bax and Caspase-3 proteins was detected by immunohistochemistry. Serum and hippocampal superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity and malondialdehyde (MDA) contents were detected by chemical colorimetric analysis. RESULTS: Compared with the sham group, the escape latencies (place-navigation) after modeling were evidently prolonged, and the times of target-platform crossing in 90 sec (spatial probe test) considerably reduced in the model group (P<0.01), suggesting an impairment of learning-memory ability. After the treatment for 21 d, the increased escape latency and the reduced target-platform crossing time in both EA and medication groups were reversed in comparison with the model group (P<0.01), suggesting an improvement of memory ability, and the effect of the EA group was significantly superior to that of the medication group (P<0.05). Compared with the sham group, the number of apoptotic cells in hippocampal CA 1- CA 3 regions, and the expression levels of hippocampal Bcl-2, Bax and Caspase-3 proteins, and serum and hippocampal MDA contents were significantly increased in the model group (P<0.01), while serum and hippocampal SOD and GSH-Px levels obviously decreased in the model group (P<0.01). After the treatment for 21 days, compared to the model group, the number of the apoptotic cells, the expression levels of hippocampal Bax and Caspase--3 proteins, and the contents of serum and hippocampal MDA were notably decreased in the EA and medication groups (P<0.01), whereas, Bcl-2 protein expression levels, and serum and hippocampal SOD and GSH-Px activity were notably up-regulated in the EA and medication groups (P<0.01). The effects of EA group were obviously superior to those of medication group in increasing hippocampal Bcl-2 immunoactivity, serum SOD and GSH-Px and hippocampal GSH-Px activity and in down-regulating serum MDA level (P<0.01, P<0.05). CONCLUSION: Electroacupuncture intervention can improve learning-memory ability in ischemic learning-memory disorder rats which may be associated with its effects in reducing blood and hippocampal OFR contents and hippocampal cellular apoptosis.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Electroacupuncture , Ischemia/complications , Learning Disabilities/therapy , Memory Disorders/therapy , Reactive Oxygen Species/metabolism , Acupuncture Points , Animals , Apoptosis Regulatory Proteins/metabolism , Glutathione Peroxidase/metabolism , Humans , Ischemia/psychology , Learning , Learning Disabilities/etiology , Learning Disabilities/genetics , Learning Disabilities/metabolism , Male , Malondialdehyde/metabolism , Memory , Memory Disorders/etiology , Memory Disorders/genetics , Memory Disorders/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism
13.
Proc Natl Acad Sci U S A ; 111(33): 12019-24, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25092294

ABSTRACT

The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31(comet) to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31(comet)-dependent disassembly of a Cdc20-Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31(comet). The joint action of TRIP13 and p31(comet) also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Carrier Proteins/physiology , Cell Cycle Proteins/physiology , Mitosis , Nuclear Proteins/physiology , ATPases Associated with Diverse Cellular Activities , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cdc20 Proteins/metabolism , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , Mad2 Proteins/metabolism , Nuclear Proteins/metabolism , Protein Binding
14.
J Biol Chem ; 289(34): 23928-37, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25012665

ABSTRACT

The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31(comet). Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31(comet)-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development.


Subject(s)
Carrier Proteins/physiology , Mitosis/physiology , ATPases Associated with Diverse Cellular Activities , Carrier Proteins/genetics , Cell Cycle Proteins/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Mad2 Proteins/metabolism , Microscopy, Fluorescence , Nuclear Proteins/metabolism , RNA Interference
15.
Am J Physiol Heart Circ Physiol ; 306(2): H233-42, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24213609

ABSTRACT

The related transcriptional enhancer factor-1 (RTEF-1) increases gene transcription of hypoxia-inducible factor 1α (HIF-1α) and enhances angiogenesis in endothelium. Both hypoxia and inflammatory factor TNF-α regulate gene expression of HIF-1α, but how RTEF-1 and TNF-α coordinately regulate HIF-1α gene transcription is unclear. Here, we found that RTEF-1 interacts with p65 subunit of NF-κB, a primary mediator of TNF-α. RTEF-1 increased HIF-1α promoter activity, whereas expression of p65 subunit inhibited the stimulatory effect. By contrast, knockdown of p65 markedly enhanced RTEF-1 stimulation on the HIF-1α promoter activity (7-fold). A physical interaction between RTEF-1 and p65 was confirmed by coimmunoprecipitation experiments in cells and glutathione S-transferase (GST)-pull-down assays. A computational analysis of RTEF-1 crystal structures revealed that a conserved surface of RTEF-1 potentially interacts with p65 via four amino acid residues located at T347, Y349, R351, and Y352. We performed site-directed mutagenesis and GST-pull-down assays and demonstrated that Tyr352 (Y352) in RTEF-1 is a key site for the formation of RTEF-1 and p65-NF-κB complex. An alanine mutation at Y352 of RTEF-1 disrupted the interaction of RTEF-1 with p65. Moreover, expression of RTEF-1 decreased TNF-α-induced HIF-1α promoter activity, IL-1ß, and IL-6 mRNA levels in cells; however, the effect of RTEF-1 was largely lost when Y352 was mutated to alanine. These results indicate that RTEF-1 interacts with p65-NF-κB through Y352 and that they antagonize each other for HIF-1α transcriptional activation, suggesting a novel mechanism by which RTEF-1 regulates gene expression, linking hypoxia to inflammation.


Subject(s)
DNA-Binding Proteins/metabolism , Molecular Docking Simulation , Muscle Proteins/metabolism , Transcription Factor RelA/metabolism , Transcription Factors/metabolism , Amino Acid Sequence , Binding Sites , Conserved Sequence , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Molecular Sequence Data , Muscle Proteins/chemistry , Muscle Proteins/genetics , Mutagenesis, Site-Directed , Mutation, Missense , Promoter Regions, Genetic , Protein Binding , TEA Domain Transcription Factors , Transcription Factor RelA/chemistry , Transcription Factor RelA/genetics , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription, Genetic
16.
J Biol Chem ; 288(49): 35149-58, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24151075

ABSTRACT

MPS1 kinase is an essential component of the spindle assembly checkpoint (SAC), but its functioning mechanisms are not fully understood. We have shown recently that direct interaction between BUBR1 and MAD2 is critical for assembly and function of the human mitotic checkpoint complex (MCC), the SAC effector. Here we report that inhibition of MPS1 kinase activity by reversine disrupts BUBR1-MAD2 as well as CDC20-MAD2 interactions, causing premature activation of the anaphase-promoting complex/cyclosome. The effect of MPS1 inhibition is likely due to reduction of closed MAD2 (C-MAD2), as expressing a MAD2 mutant (MAD2(L13A)) that is locked in the C conformation rescued the checkpoint defects. In the presence of reversine, exogenous C-MAD2 does not localize to unattached kinetochores but is still incorporated into the MCC. Contrary to a previous report, we found that sustained MPS1 activity is required for maintaining both the MAD1·C-MAD2 complex and open MAD2 (O-MAD2) at unattached kinetochores to facilitate C-MAD2 production. Additionally, mitotic phosphorylation of BUBR1 is also affected by MPS1 inhibition but seems dispensable for MCC assembly. Our results support the notion that MPS1 kinase promotes C-MAD2 production and subsequent MCC assembly to activate the SAC.


Subject(s)
Cell Cycle Proteins/metabolism , Mad2 Proteins/chemistry , Mad2 Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Anaphase-Promoting Complex-Cyclosome/chemistry , Anaphase-Promoting Complex-Cyclosome/genetics , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Checkpoints/drug effects , Cell Cycle Proteins/antagonists & inhibitors , Cell Cycle Proteins/genetics , HeLa Cells , Humans , Kinetochores/drug effects , Kinetochores/metabolism , Mad2 Proteins/genetics , Mitosis , Morpholines/pharmacology , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Conformation , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/antagonists & inhibitors , Protein-Tyrosine Kinases/genetics , Purines/pharmacology , Signal Transduction , Spindle Apparatus/metabolism
17.
BMC Cell Biol ; 13: 15, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-22712476

ABSTRACT

BACKGROUND: Proteins functioning in the same biological pathway tend to be transcriptionally co-regulated or form protein-protein interactions (PPI). Multiple spatially and temporally regulated events are coordinated during mitosis to achieve faithful chromosome segregation. The molecular players participating in mitosis regulation are still being unravelled experimentally or using in silico methods. RESULTS: An extensive literature review has led to a compilation of 196 human centromere/kinetochore proteins, all with experimental evidence supporting the subcellular localization. Sixty-four were designated as "core" centromere/kinetochore components based on peak expression and/or well-characterized functions during mitosis. By interrogating and integrating online resources, we have mined for genes/proteins that display transcriptional co-expression or PPI with the core centromere/kinetochore components. Top-ranked hubs in either co-expression or PPI network are not only enriched with known mitosis regulators, but also contain candidates whose mitotic functions are not yet established. Experimental validation found that KIAA1377 is a novel centrosomal protein that also associates with microtubules and midbody; while TRIP13 is a novel kinetochore protein and directly interacts with mitotic checkpoint silencing protein p31(comet). CONCLUSIONS: Transcriptional co-expression and PPI network analyses with known human centromere/kinetochore proteins as a query group help identify novel potential mitosis regulators.


Subject(s)
Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Data Mining , Mitosis Modulators/metabolism , ATPases Associated with Diverse Cellular Activities , Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Kinetochores/metabolism , M Phase Cell Cycle Checkpoints , Microtubules/metabolism , Nuclear Proteins/metabolism , Protein Interaction Mapping , Transcription, Genetic
18.
Cell Cycle ; 10(21): 3740-50, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22037211

ABSTRACT

The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O→C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint--the Mitotic Checkpoint Complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity towards APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC.


Subject(s)
Calcium-Binding Proteins/physiology , Cell Cycle Proteins/physiology , Repressor Proteins/physiology , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Cdc20 Proteins , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , HeLa Cells , Humans , M Phase Cell Cycle Checkpoints , Mad2 Proteins , Mitosis , Multiprotein Complexes , Poly-ADP-Ribose Binding Proteins , Protein Conformation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Repressor Proteins/chemistry , Repressor Proteins/metabolism
19.
J Biol Chem ; 286(24): 21173-9, 2011 Jun 17.
Article in English | MEDLINE | ID: mdl-21525009

ABSTRACT

The mitotic checkpoint maintains genomic stability by ensuring that chromosomes are accurately segregated during mitosis. When the checkpoint is activated, the mitotic checkpoint complex (MCC), assembled from BUBR1, BUB3, CDC20, and MAD2, directly binds and inhibits the anaphase-promoting complex/cyclosome (APC/C) until all chromosomes are properly attached and aligned. The mechanisms underlying MCC assembly and MCC-APC/C interaction are not well characterized. Here, we show that a novel interaction between BUBR1 and closed MAD2 (C-MAD2) is essential for MCC-mediated inhibition of APC/C. Intriguingly, Arg(133) and Gln(134) in C-MAD2 are required for BUBR1 interaction. The same residues are also critical for MAD2 dimerization and MAD2 binding to p31(comet), a mitotic checkpoint silencing protein. Along with previously characterized BUBR1-CDC20 and C-MAD2-CDC20 interactions, our results underscore the integrity of the MCC for its activity and suggest the fundamental importance of the MAD2 αC helix in modulating mitotic checkpoint activation and silencing.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Gene Expression Regulation , Mitosis , Protein Serine-Threonine Kinases/metabolism , Repressor Proteins/metabolism , Ubiquitin-Protein Ligase Complexes/metabolism , Anaphase , Anaphase-Promoting Complex-Cyclosome , Dimerization , Gene Silencing , HeLa Cells , Humans , Mad2 Proteins , Male , Prostate/metabolism , Spindle Apparatus/metabolism , Transfection , Ubiquitin-Protein Ligases/metabolism
20.
Cell ; 137(4): 672-84, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19450515

ABSTRACT

Chromosome segregation requires assembly of kinetochores on centromeric chromatin to mediate interactions with spindle microtubules and control cell-cycle progression. To elucidate the protein architecture of human kinetochores, we developed a two-color fluorescence light microscopy method that measures average label separation, Delta, at <5 nm accuracy. Delta analysis of 16 proteins representing core structural complexes spanning the centromeric chromatin-microtubule interface, when correlated with mechanical states of spindle-attached kinetochores, provided a nanometer-scale map of protein position and mechanical properties of protein linkages. Treatment with taxol, which suppresses microtubule dynamics and activates the spindle checkpoint, revealed a specific switch in kinetochore architecture. Cumulatively, Delta analysis revealed that compliant linkages are restricted to the proximity of chromatin, suggested a model for how the KMN (KNL1/Mis12 complex/Ndc80 complex) network provides microtubule attachment and generates pulling forces from depolymerization, and identified an intrakinetochore molecular switch that may function in controlling checkpoint activity.


Subject(s)
Kinetochores/chemistry , Kinetochores/metabolism , Microtubules/chemistry , Microtubules/metabolism , Cytoskeletal Proteins , DNA-Binding Proteins/metabolism , HeLa Cells , Humans , Metaphase , Microscopy, Fluorescence , Microtubule-Associated Proteins/metabolism , Nuclear Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...