Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 247
Filter
Add more filters










Publication year range
1.
Analyst ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712505

ABSTRACT

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.

2.
Anal Chem ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38781682

ABSTRACT

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.

3.
ACS Appl Mater Interfaces ; 16(21): 27127-27138, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747495

ABSTRACT

The excessive depositions of ß-amyloid (Aß) and abnormal level of reactive oxygen species (ROS) are considered as the important pathogenic factors of Alzheimer's disease (AD). Strategies targeting only one of them have no obvious effects in clinic. In this study, a multifunctional nanocarrier CICe@M-K that crosses the blood-brain barrier (BBB) efficiently was developed for inhibiting Aß aggregation and scavenging ROS synchronously. Antioxidant curcumin (Cur) and photosensitizer IR780 were loaded in mesoporous silica nanomaterials (MSNs). Their surfaces were grafted with cerium oxide nanoparticles (CeO2 NPs) and a short peptide K (CKLVFFAED). Living imaging showed that CICe@M-K was mainly distributed in the brain, liver, and kidneys, indicating CICe@M-K crossed BBB efficiently and accumulated in brain. After the irradiation of 808 nm laser, Cur was continuously released. Both of Cur and the peptide K can recognize and bind to Aß through multiple interaction including π-π stacking interaction, hydrophobic interaction, and hydrogen bond, inhibiting Aß aggregation. On the other hand, Cur and CeO2 NPs cooperate to relieve the oxidative stress in the brains by scavenging ROS. In vivo assays showed that the CICe@M-K could diminish Aß depositions, alleviate oxidative stress, and improve cognitive ability of the APP/PS1 AD mouse model, which demonstrated that CICe@M-K is a potential agent for AD treatment.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Curcumin , Reactive Oxygen Species , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Reactive Oxygen Species/metabolism , Animals , Mice , Curcumin/chemistry , Curcumin/pharmacology , Drug Carriers/chemistry , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Cerium/chemistry , Cerium/pharmacology , Humans , Antioxidants/chemistry , Antioxidants/pharmacology , Nanoparticles/chemistry , Multifunctional Nanoparticles/chemistry , Silicon Dioxide/chemistry , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
4.
Front Plant Sci ; 15: 1376405, 2024.
Article in English | MEDLINE | ID: mdl-38681218

ABSTRACT

Phenolamides are important secondary metabolites in plant species. They play important roles in plant defense responses against pathogens and insect herbivores, protection against UV irradiation and floral induction and development. However, the accumulation and variation in phenolamides content in diverse maize lines and the genes responsible for their biosynthesis remain largely unknown. Here, we combined genetic mapping, protein regulatory network and bioinformatics analysis to further enhance the understanding of maize phenolamides biosynthesis. Sixteen phenolamides were identified in multiple populations, and they were all significantly correlated with one or several of 19 phenotypic traits. By linkage mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%, 9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and 2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each locus on average, respectively. Totally, 58 unique candidate genes were identified, 31% of them encoding enzymes involved in amine and derivative metabolic processes. Gene Ontology term analysis of the 358 protein-protein interrelated genes revealed significant enrichment in terms relating to cellular nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049, GRMZM2G165390 and GRMZM2G159587 were further validated involvement in phenolamides biosynthesis. Our results provide insights into the genetic basis of phenolamides biosynthesis in maize kernels, understanding phenolamides biosynthesis and its nutritional content and ability to withstand biotic and abiotic stress.

5.
Nat Commun ; 15(1): 3597, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678039

ABSTRACT

Highly efficient interconversion of different types of energy plays a crucial role in both science and technology. Among them, electrochemiluminescence, an emission of light excited by electrochemical reactions, has drawn attention as a powerful tool for bioassays. Nonetheless, the large differences in timescale among diverse charge-transfer pathways from picoseconds to seconds significantly limit the electrochemiluminescence efficiency and hamper their broad applications. Here, we report a timescale coordination strategy to improve the electrochemiluminescence efficiency of carbon nitrides by engineering shallow electron trap states via Au-N bond functionalization. Quantitative electrochemiluminescence kinetics measurements and theoretic calculations jointly disclose that Au-N bonds endow shallow electron trap states, which coordinate the timescale of the fast electron transfer in the bulk emitter and the slow redox reaction of co-reagent at diffusion layers. The shallow electron trap states ultimately accelerate the rate and kinetics of emissive electron-hole recombination, setting a new cathodic electrochemiluminescence efficiency record of carbon nitrides, and empowering a visual electrochemiluminescence sensor for nitrite ion, a typical environmental contaminant, with superior detection range and limit.

6.
ACS Appl Bio Mater ; 7(3): 1888-1898, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38349328

ABSTRACT

Garlic-derived exosome-like nanovesicles (GELNs) could function in interspecies communication and may serve as natural therapeutics to regulate the inflammatory response or as nanocarriers to efficiently deliver specific drugs. Staphylococcus aureus (S. aureus) is able to hide within host cells to evade immune clearance and antibiotics, leading to life-threatening infections. On-site detection and efficient treatment of intracellular S. aureus infection in wounds remain challenging. Herein, we report a thermosensitive, injectable, visible GELNs-based wound dressing, Van@GELNs/F127 hydrogel (gel Van@GELNs), which is H2O2-responsive and can slowly release vancomycin into host cells forS. aureus infection visualization and treatment in wounds. GELNs show inherent antibacterial activity, which is significantly enhanced after loading vancomycin. Both GELNs and Van@GELNs have the ability to be internalized by cells, so Van@GELNs are more effective than free vancomycin in killing S. aureus in RAW 264.7 macrophages. When applied to an S. aureus-infected wound on a mouse, the colorless HRP&ABTS/Van@GELNs/F127 solution immediately changes to a green hydrogel and shows better therapeutic effect than vancomycin. Thus, direct visualization by the naked eye and effective treatment of S. aureus infection in wounds are achieved by gel Van@GELNs. We anticipate gel Van@GELNs be applied for the theranostics of S. aureus infection diseases in the clinic in the near future.


Subject(s)
Exosomes , Garlic , Polyethylenes , Polypropylenes , Staphylococcal Infections , Mice , Animals , Vancomycin/pharmacology , Vancomycin/therapeutic use , Staphylococcus aureus , Hydrogen Peroxide/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Staphylococcal Infections/drug therapy , Bandages , Hydrogels/therapeutic use , Hydrogels/pharmacology
7.
Anal Chem ; 96(5): 2165-2172, 2024 02 06.
Article in English | MEDLINE | ID: mdl-38284353

ABSTRACT

The profiling of multiple glycans on a single cell is important for elucidating glycosylation mechanisms and accurately identifying disease states. Herein, we developed a closed bipolar electrode (BPE) array chip for live single-cell trapping and in situ galactose and sialic acid detection with the electrochemiluminescence (ECL) method. Methylene blue-DNA (MB-DNA) as well as biotin-DNA (Bio-DNA) codecorated AuNPs were prepared as nanoprobes, which were selectively labeled on the cell surface through chemoselective labeling techniques. The individual cell was captured and labeled in the microtrap of the cathodic chamber, under an appropriate potential, MB molecules on the cellular membrane underwent oxidation, triggering the reduction of [Ru(bpy)3]2+/TPA and consequently generating ECL signals in the anodic chamber. The abundance of MB groups on the single cell enabled selective monitoring of both sialic acid and galactosyl groups with high sensitivity using ECL. The sialic acid and galactosyl content per HepG2 cell were detected to be 0.66 and 0.82 fmol, respectively. Through comprehensive evaluation of these two types of glycans on a single cell, tumor cells, and normal cells could be effectively discriminated and the accuracy of single-cell heterogeneous analysis was improved. Additionally, dynamic monitoring of variations in galactosyl groups on the surface of the single cell was also achieved. This work introduced a straightforward and convenient approach for heterogeneity analysis among single cells.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Luminescent Measurements/methods , Gold , N-Acetylneuraminic Acid , Biosensing Techniques/methods , Electrodes , DNA , Electrochemical Techniques/methods
8.
Anal Chem ; 95(44): 16407-16417, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37883696

ABSTRACT

Regulation of the reaction pathways is a perennial theme in the field of chemistry. As a typical chromogenic substrate, 3,3',5,5'-tetramethylbenzidine (TMB) generally undertakes one-electron oxidation, but the product (TMBox1) is essentially a confused complex and is unstable, which significantly hampers the clinic chromogenic bioassays for more than 50 years. Herein, we report that sodium dodecyl sulfate (SDS)-based micelles could drive the direct two-electron oxidation of TMB to the final stable TMBox2. Rather than activation of H2O2 oxidant in the one-electron TMB oxidation by common natural peroxidase, activation of the TMB substrate by SDS micelles decoupled the thermodynamically favorable complex between TMBox2 with unreacted TMB, leading to an unusual direct two-electron oxidation pathway. Mechanism studies demonstrated that the complementary spatial and electrostatic isolation effects, caused by the confined hydrophobic cavities and negatively charged outer surfaces of SDS micelles, were crucial. Further cascading with glucose oxidase, as a proof-of-concept application, allowed glucose to be more reliably measured, even in a broader range of concentrations without any conventional strong acid termination.


Subject(s)
Hydrogen Peroxide , Micelles , Oxidation-Reduction , Peroxidase/metabolism , Benzidines/chemistry , Colorimetry , Chromogenic Compounds/chemistry
9.
J Chromatogr A ; 1709: 464407, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37748352

ABSTRACT

Due to lack of chromogenic groups and fluorescence groups, high boiling point, high polarity, low volatility, and small molecular weight of glyphosate, glufosinate and bentazone, the detection of three analyses were limited in all kinds of food. Herein, a method for the simultaneous determination of glyphosate, glufosinate and bentazone in tea by ion chromatography tandem triple quadrupole mass spectrometry (IC-MS) was developed, which is without organic solvent and complex derivatization. The recoveries of three compounds in different teas (black tea, green tea, white tea) ranged from 80.40 % to 107.00 %, and the intraday precision (n = 6) ranged from 0.57 % to 9.90 %, the daytime precision ranged from 1.00 % to 5.30 %, the quantitative limit (LOQ) ranged from 0.36 to 1.30 µg/L, and the detection limit (LOD) ranged from 0.11 to 0.39 µg/L. Furthermore, the detection limit and quantitative limit of glyphosate, glufosinate and bentazone by this method are lower than other methods in real samples. Meanwhile, the established method was successfully applied to determine the terminal residues of the three analytes in twelve tea samples from commercial market. Therefore, this method can provide reliable technical support for the study of residue status in vegetables and fruits.


Subject(s)
Herbicides , Herbicides/analysis , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Tea/chemistry
10.
Anal Chem ; 95(39): 14511-14515, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37721425

ABSTRACT

Photoacoustic (PA) imaging of urokinase-type plasminogen activator (uPA) activity in vivo holds high promise for early diagnosis of breast cancer. Molecular probes with resisted fluorescence (FL) emission for enhanced PA signals of uPA activity have not been reported. Herein, we proposed a molecular probe Cbz-Gly-Gly-Arg-Phe-Phe-IR775 (Z-GGRFF-IR775) which, upon uPA cleavage, assembled into nanoparticles FF-IR775-NP with quenched fluorescence but enhanced PA signals. Experimental results validated that, upon uPA activation, Z-GGRFF-IR775 exhibited 4.7-fold, 4.1-fold, and 2.9-fold higher PA signals over those in uPA inhibitor-treated control groups in vitro, in MDA-MB-231 cells, and in a tumor-bearing mouse model, respectively. We anticipate that this probe could be applied for highly sensitive PA imaging of uPA activity in early stage malignant tumors in the near future.


Subject(s)
Neoplasms , Photoacoustic Techniques , Animals , Mice , Urokinase-Type Plasminogen Activator , Diagnostic Imaging , Receptors, Urokinase Plasminogen Activator
11.
Analyst ; 148(19): 4850-4856, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37622412

ABSTRACT

Synthetic cannabinoids (SCs) are a series of artificial chemical substances with pharmacological properties similar to those of natural cannabinoids and their abuse poses a great risk to social security and human health. However, the highly sensitive detection of low concentrations of SCs in human serum remains a great challenge. In this work, we developed a highly sensitive, rapid and highly selective method for the detection of SCs in human serum. Magnetic molecularly imprinted polymer (MIP) nanocomposites were prepared through self-polymerization of dopamine and template molecules on the surfaces of magnetic beads. 9H-Carbazole-9-hexanol (9CH) was used as a template molecule because of its long chain structure shared with six synthetic cannabinoids and its ability to provide specific recognition sites. With these magnetic MIP nanoparticles, six SCs could be rapidly and effectively extracted from human blood. The concentrations of six SCs could be accurately determined by high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis. The limits of detection were in the range of 0.1-0.3 ng mL-1. The proposed method is characterized by high sensitivity and selectivity, and has great potential for application in the analysis of practical samples.


Subject(s)
Cannabinoids , Molecular Imprinting , Humans , Molecularly Imprinted Polymers , Chromatography, High Pressure Liquid/methods , Magnetic Phenomena , Molecular Imprinting/methods
12.
Biomaterials ; 301: 122284, 2023 10.
Article in English | MEDLINE | ID: mdl-37619266

ABSTRACT

Taking advantage of endogenous Ca2+ to upregulate intramitochondrial Ca2+ level has become a powerful mean for mitochondrial dysfunction-mediated tumor therapy. However, the Ca2+ entered into mitochondria is limited ascribing to the uncontrollability and non-selectivity of endogenous Ca2+ transport. It remains a great challenge to make the maximum use of endogenous Ca2+ to ensure sufficient Ca2+ overloading in mitochondria. Herein, we smartly fabricate an intracellular Ca2+ directional transport channel to selectively transport endogenous Ca2+ from endoplasmic reticulum (ER) to mitochondria based on cascade release nanoplatform ABT-199@liposomes/doxorubicin@FeIII-tannic acid (ABT@Lip/DOX@Fe-TA). In tumor acidic microenvironment, Fe3+ ions are firstly released and reduced by tannic acid (TA) to Fe2+ for ROS generation. Subsequently, under the NIR light irradiation, the released ABT-199 molecules combine with ROS contribute to the formation of IP3R-Grp75-VDAC1 channel between ER and mitochondria, thus Ca2+ ions are directionally delivered and intramitochondrial Ca2+ level is significantly upregulated. The synergetic ROS generation and mitochondrial Ca2+ overloading effectively intensifies mitochondrial dysfunction, thereby achieving efficient tumor inhibition. This work presents a new insight and promising avenue for endogenous Ca2+-involved tumor therapies.


Subject(s)
Calcium , Ferric Compounds , Reactive Oxygen Species , Mitochondria , Doxorubicin/pharmacology
13.
Anal Chem ; 95(36): 13716-13724, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37650675

ABSTRACT

Photoelectrochemical (PEC) sensing enables the rapid, accurate, and highly sensitive detection of biologically important chemicals. However, achieving high selectivity without external biological elements remains a challenge because the PEC reactions inherently have poor selectivity. Herein, we report a strategy to address this problem by regulating the charge-transfer pathways using polymeric carbon nitride (pCN)-based heterojunction photoelectrodes. Interestingly, because of redox reactions at different semiconductor/electrolyte interfaces with specific charge-transfer pathways, each analyte demonstrated a unique combination of photocurrent-change polarity. Based on this principle, a pCN-based PEC sensor for the highly selective sensing of ascorbic acid in serum against typical interferences, such as dopamine, glutathione, epinephrine, and citric acid was successfully developed. This study sheds light on a general PEC sensing strategy with high selectivity without biorecognition units by engineering charge-transfer pathways in heterojunctions on photoelectrodes.


Subject(s)
Ascorbic Acid , Citric Acid , Dopamine , Engineering
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 300: 122950, 2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37295202

ABSTRACT

Early and accurate diagnosis of hepatocellular carcinoma (HCC) is of significant importance for improving the survival rate and quality of life for HCC patients. The combined detection of alpha-fetoprotein (AFP) and alpha-fetoprotein-L3 (AFP-L3), namely AFP-L3%, can greatly improve the accuracy of HCC diagnosis compared with AFP detection. Herein, we developed a novel intramolecular fluorescence resonance energy transfer (FRET) strategy for sequential detection of AFP and AFP-specific core fucose to improve the diagnosis accuracy of HCC. Firstly, fluorescence-labeled AFP aptamer (AFP Apt-FAM) was used to specifically recognize all AFP isoforms, and total AFP was quantitatively determined using fluorescence intensity of FAM. Then, 4-((4-(dimethylamino)phenyl)azo)benzoic acid (Dabcyl) labeled lectins (PhoSL-Dabcyl) were used to specifically recognize the core fucose expressed on AFP-L3 that does not bind to other AFP isoforms. The combination of FAM and Dabcyl on the same AFP molecule could generate FRET effect, thereby quenching the fluorescence signal of FAM and quantitatively determining AFP-L3. After that, AFP-L3% was calculated according to the ratio of AFP-L3 to AFP. With this strategy, the concentration of total AFP, AFP-L3 isoform as well as the AFP-L3% were sensitively detected. Detection limits of 0.66 and 0.186 ng/mL were obtained for AFP and AFP-L3 in human serum, respectively. Clinical human serum test results showed that AFP- L3 % test was more accurate than AFP assay to distinguish healthy people, HCC patients and benign liver disease patients. Therefore, the proposed strategy is simple, sensitive and selective, which can improve the accuracy of early diagnosis of HCC, and has good clinical application potential.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , alpha-Fetoproteins , Liver Neoplasms/pathology , Fluorescence Resonance Energy Transfer , Biomarkers, Tumor , Fucose , Quality of Life , Protein Isoforms/metabolism , Plant Lectins/metabolism
15.
Small ; 19(41): e2206959, 2023 10.
Article in English | MEDLINE | ID: mdl-37322406

ABSTRACT

Excessive accumulations of reactive oxygen species (ROS) and amyloid-ß (Aß) protein are closely associated with the complex pathogenesis of Alzheimer's disease (AD). Therefore, approaches that synergistically exert elimination of ROS and dissociation of Aß fibrils are effective therapeutic strategies for correcting the AD microenvironment. Herein, a novel near infrared (NIR) responsive Prussian blue-based nanomaterial (PBK NPs) is established with excellent antioxidant activity and photothermal effect. PBK NPs possess similar activities to multiple antioxidant enzymes, including superoxide dismutase, peroxidase, and catalase, which can eliminate massive ROS and relieve oxidative stress. Under the NIR irradiation, PBK NPs can generate local heat to disaggregate Aß fibrils efficiently. By modifying CKLVFFAED peptide, PBK NPs display obvious targeting ability for blood-brain barrier penetration and Aß binding. Furthermore, in vivo studies demonstrate that PBK NPs have outstanding ability to decompose Aß plaques and alleviate neuroinflammation in AD mouse model. Overall, PBK NPs provide evident neuroprotection by reducing ROS levels and regulating Aß deposition, and may accelerate the development of multifunctional nanomaterials for delaying the progression of AD.


Subject(s)
Alzheimer Disease , Nanostructures , Mice , Animals , Alzheimer Disease/metabolism , Antioxidants/therapeutic use , Reactive Oxygen Species/metabolism , Photothermal Therapy , Amyloid beta-Peptides/metabolism
16.
Talanta ; 264: 124779, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37311328

ABSTRACT

Escherichia coli (E. coli) is one of the most ubiquitous foodborne pathogens that can cause infections and threaten human health. Herein, a colorimetric method for sensitive detection of E. coli was established by using enzyme-nanozyme cascade reaction for signal amplification. Gold nanoparticles (AuNPs) are well-known nanozymes due to their high peroxidase-like activity. When the dense cetyltrimethylammonium bromide (CTAB) membrane on the surfaces of AuNPs kept the substrate away from AuNPs, the peroxidase activity of AuNPs was inhibited. However, the CTAB membrane could be disrupted by Ag+, resulting in enhanced peroxidase activity of AuNPs. When E. coli was present, the enzyme-nanozyme cascade reaction was initiated. The substrate p-aminophenyl ß-D-galactopyranoside (PAPG) was hydrolyzed to the reductive p-aminophenol (PAP) by beta-galactosidase (ß-gal) in E. coli, reducing Ag+ to Ag. Consequently, CTAB-AuNPs remained weak peroxidase activity and could not catalyze the H2O2-mediated oxidation of TMB. As the amount of E. coli increased, the absorbance of TMB decreased along with a color change from deep blue to pink. The absorbance intensity displayed a linear dependence on E. coli from 1.0 × 102 to 1.0 × 109 CFU mL-1. Therefore, the proposed method holds good prospects in foodborne pathogenic bacteria detection.


Subject(s)
Gold , Metal Nanoparticles , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Escherichia coli , Cetrimonium , Hydrogen Peroxide , Colorimetry/methods , Peroxidase/chemistry
17.
Biosens Bioelectron ; 237: 115452, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37311408

ABSTRACT

Color-switch electrochemiluminescence (ECL) sensing platform based on a dual-bipolar electrode (D-BPE) is reported in this work. The D-BPE was composed of a cathode filled with buffer and two anodes filled with [Ru(bpy)3]2+-TPrA and luminol-H2O2 solutions, respectively. Both anodes were modified with capture DNA and served as ECL reporting platforms. After introducing ferrocene-labeled aptamer (Fc-aptamer) on both anodes, the ECL emission signal of the [Ru(bpy)3]2+ was difficult to be observed (anode 1), while luminol emitted a strong and visible ECL signal (anode 2). Ferrocene (Fc) did not only prevent the oxidation of [Ru(bpy)3]2+ due to its lower oxidation potential, its oxidation product Fc+ also quenched the [Ru(bpy)3]2+ ECL through efficient energy transfer. For luminol, Fc+ catalyzes the accelerated formation of the excited-state of the luminol anion radical, which leads to the enhancement of the luminol ECL. In the presence of food-borne pathogens, the aptamer was assembled with them, leading to the leaving of Fc from the surface of the D-BPE anodes. The ECL intensity of [Ru(bpy)3]2+ was enlarged, meanwhile, the blue emission signal of luminol became weakened. By self-calibrating the ratio of the two signals, 1-106 CFU mL-1 food-borne pathogenic bacteria can be sensitively detected with a detection limit of 1 CFU mL-1. Ingeniously, the color-switch biosensor can be used to detect S. aureus, E. coli and S. typhimurium by assembling the corresponding aptamers onto the D-BPE anodes.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metallocenes , Luminescent Measurements , Escherichia coli , Hydrogen Peroxide , Luminol , Staphylococcus aureus , Electrodes , Electrochemical Techniques
18.
Chem Sci ; 14(24): 6780-6791, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37350812

ABSTRACT

A single stimulus leading to multiple responses is an essential function of many biological networks, which enable complex life activities. However, it is challenging to duplicate a similar chemical reaction network (CRN) using non-living chemicals, aiming at the disclosure of the origin of life. Herein, we report a nanozyme-based CRN with feedback and feedforward functions for the first time. It demonstrates multiple responses at different modes and intensities upon a single H2O2 stimulus. In the two-electron cascade oxidation of 3,3',5,5'-tetramethylbenzidine (TMB), the endogenous product H2O2 competitively inhibited substrates in the first one-electron oxidation reaction on a single-atom nanozyme (Co-N-CNTs) and strikingly accelerated the second one-electron oxidation reaction under a micellar nanozyme. As a proof-of-concept, we further confined the nanozymatic network to a microfluidic chip as a simplified artificial cell. It exhibited remarkable selectivity and linearity in the perception of H2O2 stimulus against more than 20 interferences in a wide range of concentrations (0.01-100 mM) and offered an instructive platform for studying primordial life-like processes.

19.
Nat Commun ; 14(1): 2780, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188673

ABSTRACT

Self-adaptability is highly envisioned for artificial devices such as robots with chemical noses. For this goal, seeking catalysts with multiple and modulable reaction pathways is promising but generally hampered by inconsistent reaction conditions and negative internal interferences. Herein, we report an adaptable graphitic C6N6-based copper single-atom catalyst. It drives the basic oxidation of peroxidase substrates by a bound copper-oxo pathway, and undertakes a second gain reaction triggered by light via a free hydroxyl radical pathway. Such multiformity of reactive oxygen-related intermediates for the same oxidation reaction makes the reaction conditions capable to be the same. Moreover, the unique topological structure of CuSAC6N6 along with the specialized donor-π-acceptor linker promotes intramolecular charge separation and migration, thus inhibiting negative interferences of the above two reaction pathways. As a result, a sound basic activity and a superb gain of up to 3.6 times under household lights are observed, superior to that of the controls, including peroxidase-like catalysts, photocatalysts, or their mixtures. CuSAC6N6 is further applied to a glucose biosensor, which can intelligently switch sensitivity and linear detection range in vitro.


Subject(s)
Copper , Graphite , Copper/chemistry , Oxidation-Reduction , Catalysis , Peroxidase , Peroxidases , Free Radicals , Graphite/chemistry , Reactive Oxygen Species
20.
J Am Chem Soc ; 145(23): 12617-12629, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37257165

ABSTRACT

The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.


Subject(s)
Biosensing Techniques , DNA, Catalytic , Nanostructures , DNA, Catalytic/chemistry , Feedback , DNA/chemistry , Nanostructures/chemistry , Catalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...