Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 8(8)2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30104543

ABSTRACT

Nanocrystal solar cells (NCs) allow for large scale solution processing under ambient conditions, permitting a promising approach for low-cost photovoltaic products. Although an up to 10% power conversion efficiency (PCE) has been realized with the development of device fabrication technologies, the open circuit voltage (Voc) of CdTe NC solar cells has stagnated below 0.7 V, which is significantly lower than most CdTe thin film solar cells fabricated by vacuum technology (around 0.8 V~0.9 V). To further improve the NC solar cells' performance, an enhancement in the Voc towards 0.8⁻1.0 V is urgently required. Given the unique processing technologies and physical properties in CdTe NC, the design of an optimized band alignment and improved junction quality are important issues to obtain efficient solar cells coupled with high Voc. In this work, an efficient method was developed to improve the performance and Voc of solution-processed CdTe nanocrystal/TiO2 hetero-junction solar cells. A thin layer of solution-processed CdS NC film (~5 nm) as introduced into CdTe NC/TiO2 to construct hetero-junction solar cells with an optimized band alignment and p-n junction quality, which resulted in a low dark current density and reduced carrier recombination. As a result, devices with improved performance (5.16% compared to 2.63% for the control device) and a Voc as high as 0.83 V were obtained; this Voc value is a record for a solution-processed CdTe NC solar cell.

2.
Nanomaterials (Basel) ; 7(5)2017 May 03.
Article in English | MEDLINE | ID: mdl-28467347

ABSTRACT

We propose Sb-doped TiO2 as electron acceptor material for depleted CdTe nanocrystal (NC) hetero-junction solar cells. Novel devices with the architecture of FTO/ZnO/Sb:TiO2/CdTe/Au based on CdTe NC and TiO2 precursor are fabricated by rational ambient solution process. By introducing TiO2 with dopant concentration, we are able to tailor the optoelectronic properties of NC solar cells. Our novel devices demonstrate a very high open circuit voltage of 0.74 V, which is the highest Voc reported for any CdTe NC based solar cells. The power conversion efficiency (PCE) of solar cells increases with the increase of Sb-doped content from 1% to 3%, then decreases almost linearly with further increase of Sb content due to the recombination effect. The champion device shows Jsc, Voc, FF, and PCE of 14.65 mA/cm², 0.70 V, 34.44, and 3.53% respectively, which is prospective for solution processed NC solar cells with high Voc.

SELECTION OF CITATIONS
SEARCH DETAIL
...